Published in
2024:
December -2024 Published Paper
- Saxena, S., Panda, S., Tiwari, E., Singh, R., Fouda, M. M., Kalra, M. K., ... & Suri, J. S. (2024). Navigating the Artificial Intelligence Revolution in NeuroOncology: A Multidisciplinary Viewpoint. Neurocomputing, 129220.
https://doi.org/10.1016/j.neucom.2024.129220.
- Raghupathy, B. K., Vairavasundaram, S., Ganesan, M., Namachivayam, R. K., Kotecha, K., & Herencsar, N. (2024). Enhanced Quantum Convolutional Neural Network for Signature Authentication in Consumer Products. IEEE Transactions on Consumer Electronics.
https://doi.org/10.1109/TCE.2024.3509624
- Rajasekar, E., Chandra, H., Pears, N., Vairavasundaram, S., & Kotecha, K. (2025). Lung image quality assessment and diagnosis using generative autoencoders in unsupervised ensemble learning. Biomedical Signal Processing and Control, 102, 107268.
https://doi.org/10.1016/j.bspc.2024.107268
- Joshi, V. C., Mehta, M. A., & Kotecha, K. (2024). White blood cell segmentation using U-Net and its variants to improve leukemia diagnosis. Neural Computing and Applications, 1-22.
https://doi.org/10.1007/s00521-024-10757-3
- Dave, N. R., Mehta, M. A., & Kotecha, K. (2024). Effective Stemmers Using Trie Data Structure for Enhanced Processing of Gujarati Text. International Journal of Computational Intelligence Systems, 17(1), 309.
https://doi.org/10.1007/s44196-024-00679-2
- Joshi, A., Pradhan, B., Chakraborty, S., Varatharajoo, R., Gite, S., & Alamri, A. (2024). Deep-Transfer-Learning Strategies for Crop Yield Prediction Using Climate Records and Satellite Image Time-Series Data. Remote Sensing, 16(24), 4804.
https://doi.org/10.3390/rs16244804
- Khalate, P., Gite, S., Pradhan, B., & Lee, C. W. (2024). Advancements and gaps in natural language processing and machine learning applications in healthcare: a comprehensive review of electronic medical records and medical imaging. Frontiers in Physics, 12, 1445204.
https://doi.org/10.3389/fphy.2024.1445204
November -2024 Published Paper
- Kumarappan, J., Rajasekar, E., Vairavasundaram, S., Kotecha, K., & Kulkarni, A. (2024). Federated Learning Enhanced MLP–LSTM Modeling in an Integrated Deep Learning Pipeline for Stock Market Prediction. International Journal of Computational Intelligence Systems, 17(1), 267.
https://doi.org/10.1007/s44196-024-00680-9.
- Kumarappan, J., Rajasekar, E., Vairavasundaram, S., Kotecha, K., & Kulkarni, A. (2024). Siamese Graph Convolutional Split-Attention Network with NLP based Social Sentimental Data for enhanced stock price predictions. Journal of Big Data, 11(1), 154
https://doi.org/10.1186/s40537-024-01016-2
- Al-Najjar, H. A., Pradhan, B., He, X., Sheng, D., Alamri, A., Gite, S., & Park, H. J. (2024). Integrating Physical and Machine Learning Models for Enhanced Landslide Prediction in Data-Scarce Environments. Earth Systems and Environment, 1-28
https://doi.org/10.1007/s41748-024-00508-8
- Balgude SD, Gite S, Pradhan B, Lee C. 2024. Artificial intelligence and machine learning approaches in cerebral palsy diagnosis, prognosis, and management: a comprehensive review. PeerJ Computer Science 10:e2505
https://doi.org/10.7717/peerj-cs.2505
October -2024 Published Paper
- Khan, N. A., Hussain, S., Spratford, W., Goecke, R., Kotecha, K., & Jamwal, P. (2024). Deep Learning-Driven Analysis of a Six-Bar Mechanism for Personalized Gait Rehabilitation. Journal of Computing and Information Science in Engineering, 1-23.
https://doi.org/10.1115/1.4066859.
- Priyadharshini, S., Ramkumar, K., Vairavasundaram, S., Narasimhan, K., Venkatesh, S., Madhavasarma, P., & Kotecha, K. (2024). Bio-inspired feature selection for early diagnosis of Parkinson’s disease through optimization of deep 3D nested learning. Scientific Reports, 14(1), 23394.
https://doi.org/10.1038/s41598-024-74405-5
- Jain, P., Sar, A., Choudhury, T., Singh, V., & Kotecha, K. (2023, December). Differentiation of Music Genre from an Audio File Using Neural Networks. In International Conference on Information Systems and Management Science (pp. 482-490). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-70789-6_40
- Ashtagi, R., Akkalkot, A. I., Kotecha, K., Maginmani, U. H., Patil, P., & Patil, A. (2024, April). Detection of Stage of Cancer Using Machine Learning and Deep Learning. In International Conference on Advances in Information Communication Technology & Computing (pp. 607-619). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-6103-6_38
- S. Khairnar, S. Gite, K. Mahajan, B. Pradhan, A. Alamri and S. D. Thepade, "Advanced Techniques for Biometric Authentication: Leveraging Deep Learning and Explainable AI," in IEEE Access,
https://doi.org/10.1109/ACCESS.2024.3474690.
September -2024 Published Paper
- Sivamayilvelan, K., Rajaseker, E., Balachandran, S., Kotecha, K., & Vairavasundaram, S. (2024). Data-driven Approach for identifying the factors related to debt collector performance. Journal of Open Innovation: Technology, Market, and Complexity, 100385.
https://doi.org/10.1016/j.joitmc.2024.100385.
- Kamat, P., Kumar, S., & Kotecha, K. (2024). DeepTool: A Deep Learning Framework for Tool Wear Onset Detection and Remaining Useful Life Prediction. MethodsX, 102965.
https://doi.org/10.1016/j.mex.2024.102965
- Singh, D., Marathe, A., Roy, S., Walambe, R., & Kotecha, K. (2024). Explainable Rotation-Invariant Self-Supervised Representation Learning. MethodsX, 102959.
https://doi.org/10.1016/j.mex.2024.102959
- Divyeshkumar Joshi, D., Kumar, S., Patil, S., Kamat, P., Kolhar, S., & Kotecha, K. Deep Learning with Ensemble Approach for Early Pile Fire Detection Using Aerial Images. Frontiers in Environmental Science, 12, 1440396.
https://doi.org/10.3389/fenvs.2024.1440396
- Warke, V., Kumar, S., Bongale, A., Kotecha, K., & Abraham, A. (2024). Enhancement of tool life using magneto-rheological fluid damping and tool wear prediction through deep learning model in milling. Engineering Applications of Artificial Intelligence, 137, 109265.
https://doi.org/10.1016/j.engappai.2024.109265
- Kumar, S., Sayyad, S., & Bongale, A. (2024). Fault Classification of 3D-Printing Operations Using Different Types of Machine and Deep Learning Techniques. AI, 5(4), 1759-1778.
https://doi.org/10.3390/ai5040087
- Khanna, A., Jain, S., Choudhury, T., Kotecha, K., & Sar, A. (2024, March). AI-Driven Prediction of Medicinal Property Presence in Plants Cultivated with Nutrient-Enriched Manure. In International Conference On Emerging Trends In Expert Applications & Security (pp. 73-82). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3991-2_6
- Tiwari, S., Choudhury, T., & Kotecha, K. (2024, March). Ensembling of Transfer Learning for Enhanced Precision Agriculture in Plant Disease Classification. In International Conference On Emerging Trends In Expert Applications & Security (pp. 135-144). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3991-2_12
- Mall, P., Raina, D., Choudhury, T., Kotecha, K., & Sar, A. (2024, March). An Insight on Role of Artificial Intelligence for Detection of Parkinson’s Disease. In International Conference On Emerging Trends In Expert Applications & Security (pp. 117-125). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3991-2_10
- Prithviraj, Prasad, M. G., Choudhury, T., Kotecha, K., Jain, D., & Davanageri, A. M. (2024, July). A Novel Framework of Smart Security System Based on Machine Learning Techniques. In International Conference on Intelligent and Fuzzy Systems (pp. 133-144). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-67192-0_18
- Marathe, A., Desai, A., Walambe, R., & Kotecha, K. (2024, July). Identifying and Mitigating Bias in AI-Generated Image Datasets for Better Cognitive Understanding. In International Conference on Intelligent and Fuzzy Systems (pp. 176-184). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-70018-7_20
- Desai, A., Shah, B., Maheshwari, H., Walambe, R., & Kotecha, K. (2024, March). Posture Identification and Detection for Understanding Cognitive Behavior. In 2024 IEEE International Conference on Contemporary Computing and Communications (InC4) (Vol. 1, pp. 1-5). IEEE.
https://doi.org/10.1109/InC460750.2024.10649274
August -2024 Published Paper
- Jain, D. K., Rahate, A., Joshi, G., Walambe, R., & Kotecha, K. (2022). Employing Co-learning to evaluate the Explainability of multimodal sentiment analysis. IEEE Transactions on Computational Social Systems.
https://10.1109/TCSS.2022.3176403.
- Vijayakumar, A., Vairavasundaram, S., Koilraj, J. A. S., Rajappa, M., Kotecha, K., & Kulkarni, A. (2024). Real-time visual intelligence for defect detection in pharmaceutical packaging. Scientific Reports, 14(1), 18811.
https://doi.org/10.1038/s41598-024-69701-z
- Priyadharshini, S., Ramkumar, K., Vairavasundaram, S., Narasimhan, K., Venkatesh, S., Amirtharajan, R., & Kotecha, K. (2024). A Comprehensive framework for Parkinson’s disease diagnosis using explainable artificial intelligence empowered machine learning techniques. Alexandria Engineering Journal, 107, 568-582.
https://doi.org/10.1016/j.aej.2024.07.106
- Kusal, S. D., Patil, S. G., Choudrie, J., & Kotecha, K. V. (2024). Understanding the performance of AI algorithms in Text-Based Emotion Detection for Conversational Agents. ACM Transactions on Asian and Low-Resource Language Information Processing.
https://doi.org/10.1145/3643133
- Garg, A., Garg, N. B., Jain, A., Choudhury, T., & Kotecha, K. (2023, December). A Machine Learning Approach to Cardiovascular Disease Prevention in Smart Healthcare. In International Conference on Cyber Intelligence and Information Retrieval (pp. 169-178). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3594-5_14
- Unfolding Conversational Artificial Intelligence: A Systematic Review of Datasets, Techniques and Challenges in DevelopmentsS Gite, U Rawat, S Kumar, B Saini, A Bhatt, K Kotecha…- Engineered Science, 2024
https://doi.org/10.30919/es1210
- Nedbal, C., Adithya, S., Gite, S., Naik, N., Griffin, S., & Somani, B. K. (2024). A Machine Learning Predictive Model for Ureteroscopy Lasertripsy Outcomes in a Pediatric Population—Results from a Large Endourology Tertiary Center. Journal of Endourology.
https://doi.org/10.1089/end.2024.0120
- Garg, A., Garg, N. B., Bansal, M., Jain, A., Choudhury, T., & Kotecha, K. (2024, January). Utilizing Machine Learning-Based Algorithms to Predict Student’s Future. In International Conference on Universal Threats in Expert Applications and Solutions (pp. 439-446). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3810-6_36
- Joshi, P., Sati, S., Choudhury, T., Bajaj, T., Kotecha, K., & Sar, A. (2024, January). Classification of Venomous and Non-venomous Snakes Using Transfer Learning with MobileNetV2. In International Conference on Universal Threats in Expert Applications and Solutions (pp. 427-438). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3810-6_35
July-2024 Published Paper
- Tabatabaei, S., Bulgarova, B. A., Kotecha, K., Patil, S., Volkova, I. I., & Barabash, V. V. (2024). Digital citizenship and paradigm shift in generation z’s emotional communication: Social media’s role in shaping Iranian familial bonds. Journal of Infrastructure, Policy and Development, 8(7), 5443.
https://doi.org/10.24294/jipd.v8i7.5443.
- Sharma, M., Rawat, S., Kumar, D., Awasthi, A., Sarkar, A., Sidola, A., ... & Kotecha, K. (2024). The state of the Yamuna River: a detailed review of water quality assessment across the entire course in India. Applied Water Science, 14(8), 175.
https://doi.org/10.1007/s13201-024-02227-x
- Nedbal, C., Adithya, S., Gite, S., Naik, N., Griffin, S., & Somani, B. K. (2024). A Machine Learning (ML) Predictive Model for Ureteroscopy lasertripsy (URSL) Outcomes in a Paediatric Population–Results from a large Endourology Tertiary Centre. Journal of Endourology, (ja).
https://doi.org/10.1089/end.2024.0120
- Yadav, R. K., Sharma, S., Patil, A., Jayaswal, R., Patil, S., & Kotecha, K. Dysphonia Measurements for Diagnosis of Parkinson’s Disease Using Optimized Machine Learning Techniques.
https://doi.org/10.1049/icp.2024.0529
- Garg, A., Garg, N. B., Jain, A., Choudhury, T., & Kotecha, K. (2023, December). A Machine Learning Approach to Cardiovascular Disease Prevention in Smart Healthcare. In International Conference on Cyber Intelligence and Information Retrieval (pp. 169-178). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3594-5_14
- Sar, A., Goel, A., Choudhury, T., Kotecha, K., & Bhattacharya, A. (2023, December). A Novel Framework for Automatic Plant Disease Detection Using Convolutional Neural Networks. In International Conference on Cyber Intelligence and Information Retrieval (pp. 483-497). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3594-5_40
- Sharma, H. K., Sar, A., Choudhury, T., Kotecha, K., Dutta, S., & Bhattacharya, A. (2023, December). A Novel Framework for Facial Emotion Detection Using Deep Learning Algorithms for HCI-Enabled System. In International Conference on Cyber Intelligence and Information Retrieval (pp. 15-29). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3594-5_2
- Balakrishnan, B., Chandran, K., Kannabiran, K., Chowdhury, S., Choudhury, T., & Kotecha, K. (2023, December). GIS-Based Analysis of Water Integrity Differences Within the Madurai Region. In International Conference on Cyber Intelligence and Information Retrieval (pp. 153-167). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-3594-5_13
June-2024 Published Paper
- Mishra, P., Dash, R. K., Choudhury, T., & Kotecha, K. (2024). Optimizing Residual Energy and Delay in WSN Routing using Particle Swarm Optimization. Journal homepage: http://iieta. org/journals/isi, 29(2), 761-770.
https://doi.org/10.18280/isi.290238.
- Jain, D. K., Eyre, Y. G. M., Kumar, A., Gupta, B. B., & Kotecha, K. (2024). Knowledge-based data processing for multilingual natural language analysis. ACM Transactions on Asian and Low-Resource Language Information Processing, 23(5), 1-16
https://dl.acm.org/doi/10.1145/3583686
- Bidwai, P., Gite, S., Pahuja, N., Pahuja, K., Kotecha, K., Jain, N., & Ramanna, S. (2024). Multimodal Image Fusion for the Detection of Diabetic Retinopathy Using Optimized Explainable AI-based Light GBM Classifier. Information Fusion, 102526
https://doi.org/10.1016/j.inffus.2024.102526
- Deshpande, S., Harikrishnan, R., & Walambe, R. (2024). POMDP-based Probabilistic Decision Making for Path Planning in Wheeled Mobile Robot. Cognitive Robotics
https://doi.org/10.1016/j.cogr.2024.06.001
- Joshi, P., Sati, S., Sar, A., Aich, S., Choudhury, T., Kotecha, K., & Ozseven, T. (2024, May). An End-to-End Framework for Multi-Docs Chatbot using Llama2. In Proceedings of the Cognitive Models and Artificial Intelligence Conference (pp. 232-236).
https://doi.org/10.1145/3660853.3660921
- Sar, A., Joshi, P., Sati, S., Choudhary, R., Aich, S., Choudhury, T., ... & Ozseven, T. (2024, May). A Novel End-to-End Framework for Story Generation Using Deep Neural Networks. In Proceedings of the Cognitive Models and Artificial Intelligence Conference (pp. 246-253).
https://doi.org/10.1145/3660853.3660923
- Saxena, R., Upadhayay, A., Raj, G., Choudhury, T., Kotecha, K., Sar, A., & Ozseven, T. (2024, May). Analysis of Enhanced Hidden Markov Models for Improved Stock Market Price Forecasting and Prediction. In Proceedings of the Cognitive Models and Artificial Intelligence Conference (pp. 237-245)
https://doi.org/10.1145/3660853.3660922
- Yadav, A., Sharma, V., Raj, G., Choudhury, T., Sar, A., Kotecha, K., & Ozseven, T. (2024, May). Transforming Dermatological Diagnosis: Deep Learning Approaches for Skin Disease Detection in the Digital Era. In Proceedings of the Cognitive Models and Artificial Intelligence Conference (pp. 254-262).
https://doi.org/10.1145/3660853.3660924
- Gupta, A., Gupta, A., Raj, G., Choudhury, T., Sar, A., Kotecha, K., & Ozseven, T. (2024, May). Traffic Light Detection for Self-Driving Cars using the YOLOv8 architecture. In Proceedings of the Cognitive Models and Artificial Intelligence Conference (pp. 263-269)
https://doi.org/10.1145/3660853.3660925
- Patil, S., Nankar, O., Gite, S., & Kotecha, K. (2024, January). Comparing Object Detection Models for Public Safety. In International Conference on Smart Computing and Communication (pp. 77-86). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-1313-4_7
- Sukumar, A., Desai, A., Singhal, P., Gokhale, S., Jain, D. K., Walambe, R., & Kotecha, K. Training Against Disguises: Addressing and Mitigating Bias in Facial Emotion Recognition with Synthetic Data.
https://brosdocs.net/fg2024/W017.pdf
May-2024 Published Paper
- Hayat, A., Morgado-Dias, F., Choudhury, T., Singh, T.
P., & Kotecha, K. FruitVision: A deep learning based
automatic fruit grading system.
https://doi.org/10.1515/opag-2022-0276.
- Jain, D. K., Ding, W., & Kotecha, K. (2023). Training
fuzzy deep neural network with honey badger algorithm
for intrusion detection in cloud
environment. International Journal of Machine Learning
and Cybernetics, 14(6), 2221-2237
https://doi.org/10.1007/s13042-022-01758-6
- Choudhary, V., Tanwar, S., Choudhury, T., & Kotecha, K.
(2024). Towards secure IoT networks: A comprehensive
study of metaheuristic algorithms in conjunction with
CNN using a self-generated dataset. MethodsX, 102747
https://doi.org/10.1016/j.mex.2024.102747
- Sasikumar, A., Ravi, L., Devarajan, M., Vairavasundaram,
S., Kotecha, K., & Herencsar, N. (2024). Sustainable
Electronics: A Blockchain-Empowered Digital Twin Based
Governance System for Consumer Electronic Products. IEEE
Transactions on Consumer Electronics
https://doi.org/10.1109/TCE.2024.3394512
- Khemani, B., Patil, S., Kotecha, K., & Vora, D. (2024).
Detecting health misinformation: A comparative analysis
of machine learning and graph convolutional networks in
classification tasks. MethodsX, 102737
https://doi.org/10.1016/j.mex.2024.102737
- Siraskar, R., Kumar, S., Patil, S., Bongale, A., &
Kotecha, K. (2024). Application of the Nadaraya-Watson
estimator based Attention Mechanism to the field of
Predictive Maintenance. MethodsX, 102754
https://doi.org/10.1016/j.mex.2024.102754
- Bajaj, T., Parashar, S., Choudhury, T., & Kotecha, K.
(2023, September). Framework for Reverse Supply Chain
Using Sustainable Return Policy. In International
Conference on Micro-Electronics and Telecommunication
Engineering (pp. 523-538). Singapore: Springer Nature
Singapore.
https://doi.org/10.1007/978-981-99-9562-2_43
- Singh, K. U., Kumar, A., Kumar, G., Singh, T.,
Choudhury, T., & Kotecha, K. (2023, September). An
Overview of the Use of Deep Learning Algorithms to
Predict Bankruptcy. In International Conference on
Micro-Electronics and Telecommunication Engineering (pp.
715-726). Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-99-9562-2_59
- Sar, A., Choudhury, T., Bajaj, T., Kotecha, K., & de
Marin, M. S. G. (2023, September). Airbnb Price
Prediction Using Advanced Regression Techniques and
Deployment Using Streamlit. In International Conference
on Micro-Electronics and Telecommunication
Engineering (pp. 685-698). Singapore: Springer Nature
Singapore.
https://doi.org/10.1007/978-981-99-9562-2_57
April-2024 Published Paper
- Ashtagi, Rashmi & Kotecha, Ketan & Padthe, Adithya &
Shinde, Sandip & Chinchmalatpure, Sheela & Mane, Deepak.
(2024). Design of an AI Layer for Real-Time Skin Cancer
Diagnosis. Revue d'Intelligence Artificielle. 38.
377-385.
https://doi.org/10.18280/ria.380201.
- Gupta, K., Aggarwal, S., Jha, A., Habib, A., Jagtap, J.,
Kolhar, S., ... & Choudhury, T. (2024). Deep Learning
Framework for Liver Tumor Segmentation. EAI Endorsed
Transactions on Pervasive Health and Technology, 10.
https://doi.org/10.4108/eetpht.10.5561
- Ashisha, G. R., Mary, X. A., Chowdhury, S., Karthik, C.,
Choudhury, T., & Kotecha, K. (2023, December). Early
Detection of Diabetes Using ML Based Classification
Algorithms. In International Advanced Computing
Conference (pp. 148-157). Cham: Springer Nature
Switzerland.
https://doi.org/10.1007/978-3-031-56703-2_12
- Rani, P., Lamba, R., Sachdeva, R. K., Jain, A.,
Choudhury, T., & Kotecha, K. (2023, December). Diabetes
Risk Prediction Through Fine-Tuned Gradient Boosting. In
International Advanced Computing Conference (pp.
135-147). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-56703-2_11
- Sachdeva, R. K., Singla, A., Bathla, P., Jain, A.,
Choudhury, T., & Kotecha, K. (2023, December). An
Efficient Method for Heart Failure Diagnosis. In
International Advanced Computing Conference (pp.
286-295). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-56703-2_23
March-2024 Published Paper
- Hasan, K. M. B., Sajid, M., Lapina, M. A., Shahid, M., &
Kotecha, K. (2024). Blockchain technology meets 6 G
wireless networks: A systematic survey. Alexandria
Engineering Journal, 92, 199-220.https://doi.org/10.1016/j.aej.2024.02.031
- Mahadevkar, S., Patil, S., & Kotecha, K. (2024).
Enhancement of handwritten text recognition using
AI-based hybrid approach. MethodsX, 102654. https://doi.org/10.1016/j.mex.2024.102654
- S. Gupta, S. Gilotra, S. Rathi, T. Choudhury, K. Kotecha
and T. Choudhury, "Plant Disease Recognition Using
Different CNN Models," 2024 14th International
Conference on Cloud Computing, Data Science &
Engineering (Confluence), Noida, India, 2024, pp.
787-792, https://doi.org/10.1109/Confluence60223.2024.10463383
- D. Khanduja, J. Mittal, T. Choudhury, K. Kotecha, M.
Singh and S. Sinha, "Park-Space: A Parking Space
Indicator," 2023 IEEE International Conference on ICT in
Business Industry & Government (ICTBIG), Indore, India,
2023, pp. 1-5,https://doi.org/10.1109/ICTBIG59752.2023.10455978
- V. Kumar, G. Kumar, S. Parashar, T. Choudhury and K.
Kotecha, "A Comprehensive Examination of Satellite
Stereo Triplet Image Matching for Digital Elevation
Model (DEM) Generation," 2023 IEEE International
Conference on ICT in Business Industry & Government
(ICTBIG), Indore, India, 2023, pp. 1-8https://doi.org/10.1109/ICTBIG59752.2023.10456056
- V. Sharma, A. Singh, Y. Prasad, S. Gupta, T. Choudhury
and K. Kotecha, "Land Use and Land Cover Classification
for Temporal Analysis on Ganjam District Region, Odisha
Using Remote Sensing and Google Earth Engine," 2023 IEEE
International Conference on ICT in Business Industry &
Government (ICTBIG), Indore, India, 2023, pp. 1-7https://doi.org/10.1109/ICTBIG59752.2023.10456228
- Singh, K. U., Kumar, A., Kumar, G., Choudhury, T.,
Singh, T., & Kotecha, K. (2023, December). Sentiment
Analysis in Social Media Marketing: Leveraging Natural
Language Processing for Customer Insights.
In International Conference on Information and
Communication Technology for Competitive Strategies (pp.
457-467). Singapore: Springer Nature Singaporehttps://doi.org/10.1007/978-981-99-9489-2_40
- Kumar, A., Singh, K. U., Kumar, G., Choudhury, T.,
Singh, T., & Kotecha, K. (2023, December). AI-Enable
Heart Sound Analysis: PASCAL Approach for
Precision-Driven Cardiopulmonary Assessment.
In International Conference on Information and
Communication Technology for Competitive Strategies (pp.
447-456). Singapore: Springer Nature Singapore.https://doi.org/10.1007/978-981-99-9489-2_39
- Ghosh, I., Gohel, R., Chakrabarti, S., Walambe, R., &
Kotecha, K. (2023, June). Indian Agri-Exports to Select
African Countries: A Machine Learning Approach to Gain
Insights Towards Sustainable Food Security.
In International Conference on Data Science and Big Data
Analysis (pp. 261-272). Singapore: Springer Nature
Singaporehttps://doi.org/10.1007/978-981-99-9179-2_20
- Farhat, S., Kumar, M., Vaish, A., Dewangan, B. K.,
Choudhury, T., & Kotecha, K. (2023, October). A
Lightweight Encryption Method for Preserving
E-Healthcare Data Privacy Using Dual Signature on
Twisted Edwards Curves. In International Conference on
Computer & Communication Technologies (pp. 69-82).
Singapore: Springer Nature Singaporehttps://doi.org/10.1007/978-981-99-9707-7_7
- Mishra, V. K., Mishra, M., Dewangan, B. K., Parijatha,
K., Choudhury, T., & Kotecha, K. (2023, October).
Reinforcement Learning Approach to Solve: PBL Markov
Model. In International Conference on Computer &
Communication Technologies (pp. 333-342). Singapore:
Springer Nature Singapore.https://doi.org/10.1007/978-981-99-9707-7_31
- Mishra, V. K., Mishra, M., Dewangan, B. K., Amulya, P.,
Choudhury, T., & Kotecha, K. (2023, October).
Comparative Analysis of ARIMA Time Series Model and
Other Techniques for Cloud Workloads Performance
Prediction. In International Conference on Computer &
Communication Technologies (pp. 343-350). Singapore:
Springer Nature Singaporehttps://doi.org/10.1007/978-981-99-9707-7_32
- Singh, K. U., Kumar, A., Kumar, G., Singh, T.,
Choudhury, T., & Kotecha, K. (2023, October).
Manufacturing In-House Information Technology Team
Analysis Hybrid Software Development Model.
In International Conference on Computer & Communication
Technologies (pp. 371-379). Singapore: Springer Nature
Singaporehttps://doi.org/10.1007/978-981-99-9707-7_35
- Dutta, C"., Singh, R., Garg, K., Choudhury, T., &
Kotecha, K. (2023, October). An Optimized Hybrid
Mechanism to Prevent Road Accidents in VANETs Using SVM
and ANN. In International Conference on Computer &
Communication Technologies (pp. 351-359). Singapore:
Springer Nature Singaporehttps://doi.org/10.1007/978-981-99-9707-7_33
- Ghate, R., Walambe, R., Kalnad, N., & Kotecha, K. (2023,
August). Real-Time Inferencing Using Transfer Learning
for a Screening of Depression Detection Using
Actigraphy. In International Conference on Artificial
Intelligence on Textile and Apparel (pp. 327-336).
Singapore: Springer Nature Singaporehttps://doi.org/10.1007/978-981-99-8476-3_27
- Singh, D., Kanathey, Y., Waykole, Y., Mishra, R. K.,
Walambe, R., Aqeel, K. H., & Kotecha, K. (2023,
December). Exploring the Usability of Quantum Machine
Learning for EEG Signal Classification. In International
Advanced Computing Conference (pp. 427-438). Cham:
Springer Nature Switzerland.https://doi.org/10.1007/978-3-031-56700-1_34
- Thakur, S., Dhawan, R., Bhargava, P., Tripathi, K.,
Walambe, R., & Kotecha, K. (2023, December). The
Forward-Forward Algorithm: Analysis and Discussion.
In International Advanced Computing Conference (pp.
397-406). Cham: Springer Nature Switzerland
https://doi.org/10.1007/978-3-031-56700-1_31
February-2024 Published Paper
- Gawde, S., Patil, S., Kumar, S., Kamat, P., & Kotecha,
K. (2024). An explainable predictive maintenance
strategy for multi-fault diagnosis of rotating machines
using multi-sensor data fusion. Decision Analytics
Journal, 100425.https://doi.org/10.1016/j.dajour.2024.100425
- S. Gawde, S. Patil, S. Kumar, P. Kamat, K. Kotecha and
S. Alfarhood, "Explainable Predictive Maintenance of
Rotating Machines using LIME, SHAP, PDP, ICE," in IEEE
Access, https://doi.org/doi:10.1109/ACCESS.2024.3367110
- Warke, V., Kumar, S., Bongale, A., & Kotecha, K. (2024).
Robust Tool Wear Prediction using Multi-Sensor Fusion
and Time-Domain Features for the Milling Process using
Instance-based Domain Adaptation. Knowledge-Based
Systems, 111454.https://doi.org/10.1016/j.knosys.2024.111454
- Subramanyam, S. P., Kotikula, D. K., Bennehalli, B.,
Babbar, A., Alamri, S., Duhduh, A. A., ... & Kotecha, K.
(2024). Plain-Woven Areca Sheath Fiber-Reinforced Epoxy
Composites: The Influence of the Fiber Fraction on
Physical and Mechanical Features and Responses of the
Tribo System and Machine Learning Modeling. ACS omega.https://doi.org/10.1021/acsomega.3c08164
- Mahadevkar, S., Patil, S., Kotecha, K., & Abraham, A.
(2024). A comparison of deep transfer learning backbone
architecture techniques for printed text detection of
different font styles from unstructured documents. PeerJ
Computer Science, 10, e1769https://doi.org/10.7717/peerj-cs.1769
- S. Verma, O. Pandey, T. Choudhury, A. Sar, K. Kotecha
and T. Choudhury, "A Comprehensive Study on the
Classification of the Edibility of Mushrooms," 2023 12th
International Conference on System Modeling &
Advancement in Research Trends (SMART), Moradabad,
India, 2023, pp. 7-13, .https://doi.org/doi:10.1109/SMART59791.2023.10428619
January-2024 Published Paper
- Subramanian, N., Ravi, L., Shaan, M. J., Devarajan, M.,
Choudhury, T., Choudhury , T., Kotecha , K. &
Vairavasundaram, S. (2024). Securing Mobile Devices from
Malware: A Faceoff Between Federated Learning and Deep
Learning Models for Android Malware
Classification. Journal of Computer Science, 20(3),
254-264. https://doi.org/10.3844/jcssp.2024.254.264
- Garg, D., Dubey, N., Goel, P., Ramoliya, D., Ganatra,
A., & Kotecha, K. (2024). Improvisation in Spinal
Surgery Using AR (Augmented Reality), MR (Mixed
Reality), and VR (Virtual Reality). Engineering
Proceedings, 59(1), 186.https://doi.org/10.3390/engproc2023059186
- Agrawal, V., Jagtap, J., Patil, S., & Kotecha, K.
(2024). Performance analysis of hybrid deep learning
framework using a vision transformer and convolutional
neural network for handwritten digit
recognition. MethodsX, 102554https://doi.org/10.1016/j.mex.2024.102554
- Khemani, B., Patil, S., Kotecha, K., & Tanwar, S.
(2024). A review of graph neural networks: concepts,
architectures, techniques, challenges, datasets,
applications, and future directions. Journal of Big
Data, 11(1), 1-43https://doi.org/10.1186/s40537-023-00876-4
- Kamat, P., Kumar, S., Patil, S., & Kotecha, K. (2024).
Anomaly-informed remaining useful life estimation
(AIRULE) of bearing machinery using deep learning
framework. MethodsX, 102555.https://doi.org/10.1016/j.mex.2024.102555
- Bidwai, P., Gite, S., Gupta, A., Pahuja, K., & Kotecha,
K. (2024). Multimodal dataset using OCTA and Fundus
Images for the study of Diabetic Retinopathy. Data in
Brief, 110033.https://doi.org/10.1016/j.dib.2024.110033
- Kantipudi, M. P., Kumar, N. P., Aluvalu, R., Selvarajan,
S., & Kotecha, K. (2024). An improved GBSO-TAENN-based
EEG signal classification model for epileptic seizure
detection. Scientific Reports, 14(1), 843.https://doi.org/10.1038/s41598-024-51337-8
- Mehta, A., Padaria, A. A., Bavisi, D., Ukani, V.,
Thakkar, P., Geddam, R., ... & Abraham, A. (2023).
Securing the Future: A Comprehensive Review of Security
Challenges and Solutions in Advanced Driver Assistance
Systems. IEEE Access.https://doi.org/10.1109/ACCESS.2023.3347200
- Agrawal, N., Pendharkar, I., Shroff, J., Raghuvanshi,
J., Neogi, A., Patil, S., ... & Kotecha, K. (2024).
A-XAI: adversarial machine learning for trustable
explainability. AI and Ethics, 1-32https://doi.org/10.1007/s43681-023-00368-4
- Jagtap, S. S., VS, S. S., Kotecha, K., &
Subramaniyaswamy, V. (2022). Securing Industrial Control
Systems from Cyber-Attacks: A Stacked Neural-Network
based Approach. IEEE Consumer Electronics Magazine.https://doi.org/10.1109/MCE.2022.3168997
- Sethi, A., Walambe, R., Jain, P., & Kotecha, K. (2023,
October). Multimodal Mental Workload Classification
Using Maus Dataset. In 2023 International Conference on
Advanced Computing Technologies and Applications
(ICACTA) (pp. 1-6). IEEE.https://doi.org/10.1109/ICACTA58201.2023.10393589
- Singh, K. U., Kumar, A., Kumar, G., Singh, T.,
Choudhury, T., & Kotecha, K. (2023, November).
Optimizing Handwritten Numeral Recognition for English
and Devanagari Using MNIST and CPAR Data. In 2023 7th
International Symposium on Innovative Approaches in
Smart Technologies (ISAS) (pp. 1-6). IEEE.https://doi.org/10.1109/ISAS60782.2023.10391793
- Singh, K. U., Kumar, A., Kumar, G., Choudhury, T., &
Kotecha, K. (2023, November). MANET Routing Protocol
Performance Comparison: DSDV, AODV, and DSR. In 2023 7th
International Symposium on Innovative Approaches in
Smart Technologies (ISAS) (pp. 1-7). IEEEhttps://doi.org/10.1109/ISAS60782.2023.10391760
- Kumar, A., Singh, K. U., Kumar, G., Choudhury, T., &
Kotecha, K. (2023, November). Combating VoIP Spam: A
Real-Time Algorithmic Approach. In 2023 7th
International Symposium on Innovative Approaches in
Smart Technologies (ISAS) (pp. 1-6). IEEE. IEEE.https://doi.org/10.1109/ISAS60782.2023.10391508
- Aggarwal, R., Aggarwal, E., Jain, A., Choudhury, T., &
Kotecha, K. (2023, November). An Automation Perception
for Cotton Crop Disease Detection Using Machine
Learning. In 2023 7th International Symposium on
Innovative Approaches in Smart Technologies (ISAS) (pp.
1-6). IEEE.https://doi.org/10.1109/ISAS60782.2023.10391530
Published in
2023:
December-2023 Published Paper
- Sharma, T., Kumar, A., Pant, S., & Kotecha, K. (2023).
Wastewater Treatment and Multi-criteria Decision-Making
Methods: A Review. IEEE Access.https://doi.org/10.30919/es1022
- Noronha, S. S., Mehta, M. A., Garg, D., Kotecha, K., &
Abraham, A. (2023). Deep Learning-based Dermatological
Condition Detection: A Systematic Review with Recent
Methods, Datasets, Challenges and Future
Directions. IEEE Access.https://doi.org/10.1109/ACCESS.2023.3339635
- Agrawal, R., Walambe, R., Kotecha, K., Gaikwad, A.,
Deshpande, C. M., & Kulkarni, S. (2024). HVDROPDB
datasets for research in retinopathy of
prematurity. Data in Brief, 52, 109839.https://doi.org/10.1016/j.dib.2023.109839
- Kumar, D., Mehta, M. A., Joshi, V. C., Oza, R. S.,
Kotecha, K., & Lin, J. C. W. (2023). Empirical
evaluation of filter pruning methods for acceleration of
convolutional neural network. Multimedia Tools and
Applications, 1-29.https://doi.org/10.1007/s11042-023-17656-0
- Joshi, S., Pushpad, V., Dutt, N., Pandey, Y., Choudhury,
T., & Kotecha, K. (2023, October). Parhit: An Innovative
Full-Stack Donation Platform with Dynamic-Routing
Approach in ReactJS. In 2023 7th International Symposium
on Multidisciplinary Studies and Innovative Technologies
(ISMSIT) (pp. 1-6). IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304893
- Rani, P., Lamba, R., Sachdeva, R. K., Jain, A.,
Choudhury, T., & Kotecha, K. (2023, October). Heart
Disease Prediction Using Bayesian Optimized
Classification Algorithms. In 2023 7th International
Symposium on Multidisciplinary Studies and Innovative
Technologies (ISMSIT) (pp. 1-5). IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304966
- Sachdeva, R. K., Singh, K. D., Bathla, P., Jain, A.,
Choudhury, T., & Kotecha, K. (2023, October). Empowering
Hepatitis Diagnosis Using RFE Feature Selection. In 2023
7th International Symposium on Multidisciplinary Studies
and Innovative Technologies (ISMSIT) (pp. 1-5). IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304999
- Choudhury, T., Singh, K. U., Kumar, A., Kumar, G., Gite,
S., & Kotecha, K. (2023, October). C-QoS-AOMDV: A
Cluster Based QoS Aware Multipath Routing Protocol for
MANET Using Hybrid Soft Computing Techniques. In 2023
7th International Symposium on Multidisciplinary Studies
and Innovative Technologies (ISMSIT) (pp. 1-6). IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304911
- Kumar, A., Singh, K. U., Kumar, G., Choudhury, T., &
Kotecha, K. (2023, October). Customer Lifetime Value
Prediction: Using Machine Learning to Forecast CLV and
Enhance Customer Relationship Management. In 2023 7th
International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT) (pp. 1-7). IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304958
- Shrivastava, P., Tripathi, N., Dewangan, B. K., Singh,
B. K., Choudhury, T., Kotecha, K., & Dewangan, S. (2023,
October). Autonomic Computing Based Respiratory
Disorders Assessment Using Speech Parameters: A
Systematic Review. In 2023 7th International Symposium
on Multidisciplinary Studies and Innovative Technologies
(ISMSIT) (pp. 1-6). IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304972
- Dewangan, S., Mundeja, P., Deshpande, B., Dewangan, B.
K., Choudhury, T., & Kotecha, K. (2023, October).
Electronic Equipment Waste Generated by Computers and
its Effect on Public Health in India. In 2023 7th
International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT) (pp. 1-6). IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304954
- Pillay, A., Arya, M., Sar, S. K., Dewangan, B. K.,
Choudhury, T., Kotecha, K., & Dewangan, S. (2023,
October). ML-Based Feature Selection Technique for
Imbalanced Data Streams. In 2023 7th International
Symposium on Multidisciplinary Studies and Innovative
Technologies (ISMSIT) (pp. 1-7). IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304929
- Arya, M., Dewangan, B. K., Choudhury, T., Kotecha, K.,
Dewangan, S., & Gaidhane, A. (2023, October). An
Adaptive Streaming Feature Selection Technique for
Classifying Non-Stationary Data Streams. In 2023 7th
International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT) (pp. 1-7). IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304890
- Garg, V. K., Singh, S., Dewangan, B. K., Choudhury, T.,
Kotecha, K., & Dewangan, S. (2023, October). Automation
in Vehicle Tracking Through RFID & Bar Code System.
In 2023 7th International Symposium on Multidisciplinary
Studies and Innovative Technologies (ISMSIT) (pp. 1-6).
IEEE.https://doi.org/10.1109/ISMSIT58785.2023.10304944
November-2023 Published Paper
- Trivedi, Pawan & Jain, Digha & Gite, Shilpa & Kotecha,
Ketan & Bhatt, Anant & Naik, Nithesh. (2023). Indian
Legal Corpus (ILC): A Dataset for A dataset summariz-ing
Indian Legal Proceeding using Natural Language.
Engineered Science. 10.30919/es1022.https://doi.org/10.30919/es1022
- Lahande, P. V., Kaveri, P. R., Saini, J. R., Kotecha,
K., & Alfarhood, S. (2023). Reinforcement Learning
approach for optimizing Cloud Resource Utilization with
Load Balancing. IEEE Access.https://doi.org/10.1109/ACCESS.2023.3329557
- Warke, V., Kumar, S., Bongale, A., Kamat, P., Kotecha,
K., Selvachandran, G., & Abraham, A. (2024). Improving
the useful life of tools using active vibration control
through data-driven approaches: A systematic literature
review. Engineering Applications of Artificial
Intelligence, 128, 107367.https://doi.org/10.1016/j.engappai.2023.107367
- Oza, R. S., Mehta, M. A., Kotecha, K., & Lin, J. C. W.
(2023). Analytics of deep model-based spatiotemporal and
spatial feature learning methods for surgical action
classification. Multimedia Tools and Applications,
1-29.https://doi.org/10.1007/s11042-023-17344-z
- Tan, S. L., Selvachandran, G., Ding, W., Paramesran, R.,
& Kotecha, K. (2023). Cervical Cancer Classification
From Pap Smear Images Using Deep Convolutional Neural
Network Models. Interdisciplinary Sciences:
Computational Life Sciences, 1-23.https://doi.org/10.1007/s12539-023-00589-5
- Deshpande, Nilkanth & Gite, Shilpa & Pradhan, Biswajeet
& Alamri, Abdullah & Lee, Chang-Wook. (2023). A New
Method for Diagnosis of Leukemia Utilizing a Hybrid
DL-ML Approach for Binary and Multi-Class Classification
on a Limited-Sized Database. Computer Modeling in
Engineering & Sciences. 1-10.
10.32604/cmes.2023.030704.https://doi.org/10.32604/cmes.2023.030704
October-2023 Published Paper
- Sasikumar, A., Ravi, L., Devarajan, M., Vairavasundaram,
S., Selvalakshmi, A., Kotecha, K., & Abraham, A. (2023).
A Decentralized Resource Allocation in Edge Computing
for Secure IoT Environments. IEEE Access.https://doi.org/10.1109/ACCESS.2023.3325056
- Bhanage, D. A., Pawar, A. V., Kotecha, K., & Abrahim, A.
(2023). Failure Detection Using Semantic Analysis and
Attention-Based Classifier Model for IT Infrastructure
Log Data. IEEE Access.https://doi.org/10.1109/ACCESS.2023.3319438
- Jagtap, S. S., VS, S. S., Kotecha, K., &
Subramaniyaswamy, V. (2022). Securing Industrial Control
Systems from Cyber-Attacks: A Stacked Neural-Network
based Approach. IEEE Consumer Electronics Magazine.https://doi.org/10.1109/MCE.2022.3168997
- Chillapalli, J., Gite, S., Saini, B., Kotecha, K., &
Alfarhood, S. (2023). A Review of Diagnostic Strategies
for Pulmonary Embolism Prediction in Computed Tomography
Pulmonary Angiograms. IEEE Access.https://doi.org/10.1109/ACCESS.2023.3319558
- Surana, A., Rathod, M., Gite, S., Patil, S., Kotecha,
K., Selvachandran, G., ... & Abraham, A. (2023). An
audio-based anger detection algorithm using a hybrid
artificial neural network and fuzzy logic
model. Multimedia Tools and Applications, 1-21.https://doi.org/10.1007/s11042-023-16815-7
- Shinde, R., Patil, S., Kotecha, K., Potdar, V.,
Selvachandran, G., & Abraham, A. (2022). Securing
AI-based Healthcare Systems using Blockchain Technology:
A State-of-the-Art Systematic Literature Review and
Future Research Directions. arXiv preprint
arXiv:2206.04793.https://doi.org/10.1002/ett.4884
September-2023 Published Paper
- De, S. K., Banerjee, A., Majumder, K., Kotecha, K., &
Abraham, A. (2023). Coverage Area Maximization using
MOFAC-GA-PSO Hybrid Algorithm in Energy Efficient WSN
design. IEEE Access.https://doi.org/10.1109/ACCESS.2023.3313000
- Walambe, R., Chaudhary, P., Bajaj, A., Rathore, A. S.,
Jain, V., & Kotecha, K. (2023, April). Generative
Adversarial Networks for Mitigating Bias in
Disinformation. In 2023 IEEE International Conference on
Contemporary Computing and Communications (InC4) (Vol.
1, pp. 1-6). IEEE.https://doi.org/10.1109/InC457730.2023.10262880
August-2023 Published Paper
- Bhatt, P., Sethi, A., Tasgaonkar, V., Shroff, J.,
Pendharkar, I., Desai, A., ... & Jain, N. K. (2023).
Machine learning for cognitive behavioral analysis:
datasets, methods, paradigms, and research
directions. Brain informatics, 10(1), 18.https://doi.org/10.1186/s40708-023-00196-6
- Jerrish, D. J., Nankar, O., Gite, S., Patil, S.,
Kotecha, K., Selvachandran, G., & Abraham, A. (2023).
Deep learning approaches for lyme disease detection:
leveraging progressive resizing and self-supervised
learning models. Multimedia Tools and Applications,
1-38.https://doi.org/10.1007/s11042-023-16306-9
- Gite, S., Mane, D. T., Mane, V., Kale, S., & Dhotre, P.
(2023). Region-based Network for Yoga Pose Estimation
with Discriminative Fine-Tuning
Optimization. International Journal of Intelligent
Systems and Applications in Engineering, 11(10s),
166-184.https://ijisae.org/index.php/IJISAE/article/view/3243
July-2023 Published Paper
- Saravanan, S., Ramkumar, K. A. N. N. A. N., Narasimhan,
K., Subramaniyaswamy, V., Kotecha, K., & Abraham, A.
(2023). Explainable Artificial Intelligence (EXAI)
Models for Early Prediction of Parkinson’s Disease Based
on Spiral and Wave Drawings. IEEE Access.https://doi.org/10.1109/ACCESS.2023.3291406
- Devi, A., Ezhilarasie, R., Joseph, S., Kotecha, K.,
Abraham, A., & Vairavasundaram, S. (2023). An Improved
Boykov’s Graph Cut-based Segmentation Technique for the
Efficient Detection of Cervical Cancer. IEEE Access.https://doi.org/10.1109/ACCESS.2023.3295833
- Roy, S., Marathe, A., Walambe, R., & Kotecha, K. (2022,
December). Self Supervised Learning for Classifying the
Rotated Images. In International Advanced Computing
Conference (pp. 17-24). Cham: Springer Nature
Switzerland.https://doi.org/10.1007/978-3-031-35644-5_2
- Saini, B., Venkatesh, D., Chaudhari, N., Shelake, T.,
Gite, S., & Pradhan, B. (2023, July). A comparative
analysis of Indian sign language recognition using deep
learning models. In Forum for Linguistic Studies (Vol.
5, No. 1, pp. 197-222).https://doi.org/10.18063/fls.v5i1.1617
June-2023 Published Paper
- Natu, M., Bachute, M., & Kotecha, K. (2023).
HCLA_CBiGRU: Hybrid Convolutional Bidirectional GRU
Based Model for Epileptic Seizure
Detection. Neuroscience Informatics, 100135.https://www.sciencedirect.com/science/article/pii/S2772528623000201?via%3Dihub
- Kusal, S., Patil, S., Choudrie, J., Kotecha, K., Vora,
D., & Pappas, I. (2023). A systematic review of
applications of natural language processing and future
challenges with special emphasis in text-based emotion
detection. Artificial Intelligence Review, 1-87.https://link.springer.com/article/10.1007/s10462-023-10509-0
- Sayyad, S., Kumar, S., Bongale, A., Kotecha, K., &
Abraham, A. (2023). Remaining Useful-Life Prediction of
the Milling Cutting Tool Using Time–Frequency-Based
Features and Deep Learning Models. Sensors, 23(12),
5659.https://www.mdpi.com/1424-8220/23/12/5659
- Sasikumar, A., Ravi, L., Kotecha, K., Abraham, A.,
Devarajan, M., & Vairavasundaram, S. (2023). A Secure
Big Data Storage Framework based on Blockchain Consensus
Mechanism with Flexible Finality. IEEE Access.DOI:
10.1109/ACCESS.2023.3282322
- Dave, N. R., Mehta, M. A., & Kotecha, K. (2023). A
Systematic Review of Stemmers of Indian and Non-Indian
Vernacular Languages. ACM Transactions on Asian and
Low-Resource Language Information Processing.https://dl.acm.org/doi/10.1145/3604612
- Bhandari, N., Walambe, R., Kotecha, K., & Kaliya, M.
(2023). Integrative gene expression analysis for the
diagnosis of Parkinson’s disease using machine learning
and explainable AI. Computers in Biology and Medicine,
107140.https://www.sciencedirect.com/science/article/abs/pii/S0010482523006054?via%3Dihub
- Marathe, A., Ramanan, D., Walambe, R., & Kotecha, K.
(2023). WEDGE: A multi-weather autonomous driving
dataset built from generative vision-language models.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (pp. 3317-3326).
May-2023 Published Paper
- Vignesh, N., Bhuvaneswari, S., Kotecha, K., &
Subramaniyaswamy, V. (2023, May). Hybrid Diet
Recommender System Using Machine Learning Technique.
In Hybrid Intelligent Systems: 22nd International
Conference on Hybrid Intelligent Systems (HIS 2022),
December 13–15, 2022 (pp. 106-115). Cham: Springer
Nature Switzerland.
https://doi.org/10.1007/978-3-031-27409-1_10
- Hiwale, M., Walambe, R., Potdar, V., & Kotecha, K.
(2023). A systematic review of privacy-preserving
methods deployed with blockchain and federated learning
for the telemedicine. Healthcare Analytics, 100192.https://doi.org/10.1016/j.health.2023.100192
April-2023 Published Paper
- Vignesh, N., Bhuvaneswari, S., Kotecha, K., &
Subramaniyaswamy, V. (2023, May). Hybrid Diet
Recommender System Using Machine Learning Technique.
In Hybrid Intelligent Systems: 22nd International
Conference on Hybrid Intelligent Systems (HIS 2022),
December 13–15, 2022 (pp. 106-115). Cham: Springer
Nature Switzerland.
https://doi.org/10.1007/978-3-031-27409-1_10
- Hiwale, M., Walambe, R., Potdar, V., & Kotecha, K.
(2023). A systematic review of privacy-preserving
methods deployed with blockchain and federated learning
for the telemedicine. Healthcare Analytics, 100192.https://doi.org/10.1016/j.health.2023.100192
- Joshi, A., Pradhan, B., Gite, S., & Chakraborty, S.
(2023). Remote-Sensing Data and Deep-Learning Techniques
in Crop Mapping and Yield Prediction: A Systematic
Review. Remote Sensing, 15(8), 2014.
https://doi.org/10.3390/rs15082014
March-2023 Published Paper
- Siraskar, R., Kumar, S., Patil, S., Bongale, A., &
Kotecha, K. (2023). Reinforcement learning for
predictive maintenance: a systematic technical
review. Artificial Intelligence Review, 1-63.
https://doi.org/10.1007/s10462-023-10468-6
- Gawde, S., Patil, S., Kumar, S., Kamat, P., Kotecha, K.,
& Abraham, A. (2022). Multi-fault diagnosis of
industrial rotating machines using data-driven approach:
A review of two decades of research. arXiv preprint
arXiv:2206.14153.
https://doi.org/10.1016/j.engappai.2023.106139
- Gaikwad, M., Ahirrao, S., Phansalkar, S., Kotecha, K., &
Rani, S. (2023). Multi-Ideology, Multiclass Online
Extremism Dataset, and Its Evaluation Using Machine
Learning. Computational Intelligence and
Neuroscience, 2023.
https://doi.org/10.1155/2023/4563145
- Tripathi, K. M., Kamat, P., Patil, S., Jayaswal, R.,
Ahirrao, S., & Kotecha, K. (2023). Gesture-to-Text
Translation Using SURF for Indian Sign Language. Applied
System Innovation, 6(2), 35.https://doi.org/10.3390/asi6020035
- Gite, S., Patil, S., Dharrao, D., Yadav, M., Basak, S.,
Rajendran, A., & Kotecha, K. (2023). Textual Feature
Extraction Using Ant Colony Optimization for Hate Speech
Classification. Big Data and Cognitive Computing, 7(1),
45. https://doi.org/10.3390/bdcc7010045
- Walambe, R., Srivastava, A., Yagnik, B., Hasan, M.,
Saiyed, Z., Joshi, G., & Kotecha, K. (2022). Explainable
misinformation detection across multiple social media
platforms. arXiv preprint arXiv:2203.11724.https://10.1109/ACCESS.2023.3251892
- Jain, D. K., Zhao, X., González-Almagro, G., Gan, C., &
Kotecha, K. (2023). Multimodal pedestrian detection
using metaheuristics with deep convolutional neural
network in crowded scenes. Information Fusion, 95,
401-414. https://doi.org/10.1016/j.inffus.2023.02.014
- Gupta, M., Gupta, B., Jabbari, A., Budhiraja, I., Garg,
D., Kotecha, K., & Iwendi, C. A Novel Computer Assisted
Genomic Test Method to Detect Breast Cancer in Reduced
Cost and Time Using Ensemble Technique.https://doi.org/10.22967/HCIS.2023.13.008
February-2023 Published Paper
- Maheshwari, S., Jain, P. K., & Kotecha, K. (2023). Route
Optimization of Mobile Medical Unit with Reinforcement
Learning.Sustainability, 15(5), 3937.
https://doi.org/10.3390/su15053937
- Ramesh, K., Warke, A. S., Kotecha, K., & Vajravelu, K.
(2023). Numerical and artificial neural network
modelling of magnetorheological radiative hybrid
nanofluid flow with Joule heating effects.Journal of
Magnetism and Magnetic Materials, 170552.
https://doi.org/10.1016/j.jmmm.2023.170552
- Ashraf, Z., Shahid, M., Ahamd, F., Sajid, M., Kotecha,
K., & Patil, S. (2023). A generalized multiobjective
reliability redundancy allocation with
uncertainties.IEEE Access.
https://doi.org/10.1109/ACCESS.2023.3248800
- Guleria HV, Luqmani AM, Kothari HD, Phukan P, Patil S,
Pareek P, Kotecha K, Abraham A, Gabralla LA. Enhancing
the Breast Histopathology Image Analysis for Cancer
Detection Using Variational Autoencoder.International
Journal of Environmental Research and Public Health.
2023; 20(5):4244. https://doi.org/10.3390/ijerph20054244
- Srinivasan, B., Venkatesan, R., Aljafari, B., Kotecha,
K., Indragandhi, V., & Vairavasundaram, S. (2023). A
Novel Multicriteria Optimization Technique for VLSI
Floorplanning Based on Hybridized Firefly and Ant Colony
Systems.IEEE Access. https://doi.org/10.1109/ACCESS.2023.3244346
- Khairnar, S., Gite, S., Kotecha, K., & Thepade, S. D.
(2023). Face Liveness Detection Using Artificial
Intelligence Techniques: A Systematic Literature Review
and Future Directions.Big Data and Cognitive
Computing,7(1), 37. https://doi.org/10.3390/bdcc7010037
- Jasmine Pemeena Priyadarsini, M., Rajini, G. K.,
Hariharan, K., Utkarsh Raj, K., Bhargav Ram, K.,
Indragandhi, V., ... & Pandya, S. (2023). Lung Diseases
Detection Using Various Deep Learning Algorithms.Journal
of Healthcare Engineering,2023. https://doi.org/10.1155/2023/3563696
- Swaminathan, B., Palani, S., Vairavasundaram, S.,
Kotecha, K., & Kumar, V. (2022). IoT-Driven Artificial
Intelligence Technique for Fertilizer Recommendation
Model.IEEE Consumer Electronics Magazine,12(2), 109-117.
https://doi.org/10.1109/MCE.2022.3151325
January -2023 Published Paper
- Singhal, P., Walambe, R., Ramanna, S., & Kotecha, K.
(2023). Domain Adaptation: Challenges, Methods,
Datasets, and Applications. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3237025
- Rajalakshmi, E., Elakkiya, R., Subramaniyaswamy, V.,
Alexey, L. P., Mikhail, G., Bakaev, M., ... & Abraham,
A. (2023). Multi-Semantic Discriminative Feature
Learning for Sign Gesture Recognition Using Hybrid Deep
Neural Architecture. IEEE Access, 11, 2226-2238. https://doi.org/10.1109/ACCESS.2022.3233671
- PreetiBaser, Jatinderkumar R.Saini, KetanKotecha ,
TomConv: An Improved CNN Model for Diagnosis of Diseases
in Tomato Plant Leaves, Procedia Computer Science
,Elsevier, https://doi.org/10.1016/j.procs.2023.01.160
- Jain, A., Aadithyanarayanan, M. R., Anand, A.,
Maheshwari, H., Gonge, S., Joshi, R., & Kotecha, K.
(2023). Web Scanner: An Innovative Prototype for
Checking Web Vulnerability. In Software Engineering
Application in Systems Design: Proceedings of 6th
Computational Methods in Systems and Software 2022,
Volume 1 (pp. 680-691). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-031-21435-6_58
Published in
2022:
- Patil, S., Varadarajan, V., Mahadevkar, S., Athawade,
R., Maheshwari, L., Kumbhare, S., ... & Kotecha, K.
(2022). Enhancing Optical Character Recognition on
Images with Mixed Text Using Semantic Segmentation.
Journal of Sensor and Actuator Networks, 11(4), 63. https://doi.org/10.3390/jsan11040063
-
Mahadevkar, S. V., Khemani, B., Patil, S., Kotecha, K.,
Vora, D., Abraham, A., & Gabralla, L. A. (2022). A
Review on Machine Learning Styles in Computer
Vision-Techniques and Future Directions. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3209825
-
Patil, S., Varadarajan, V., Mazhar, S. M., Sahibzada,
A., Ahmed, N., Sinha, O., ... & Kotecha, K. (2022).
Explainable Artificial Intelligence for Intrusion
Detection System. Electronics, 11(19), 3079. https://doi.org/10.3390/electronics11193079
- Mahajan, S., Patil, S., Bhavnagri, M., Singh, R., Kalra,
K., Saini, B., ... & Saini, J. (2022). Performance
Analysis of Reinforcement Learning Techniques for
Augmented Experience Training Using Generative
Adversarial Networks. Applied Sciences 12(24), 12923.
https://doi.org/10.3390/app122412923
- Paul, N., Tasgaonkar, V., Walambe, R., & Kotecha, K.
(2022). Integrating the Generative Adversarial Network
for Decision Making in Reinforcement Learning for
Industrial Robot Agents. Robotics, 11(6), 150. https://doi.org/10.3390/robotics11060150
- Bidwai, P., Gite, S., Pahuja, K., & Kotecha, K. (2022).
A Systematic Literature Review on Diabetic Retinopathy
Using an Artificial Intelligence Approach. Big Data and
Cognitive Computing, 6(4), 152. https://doi.org/10.3390/bdcc6040152
- Warke, V., Kumar, S., Bongale, A., & Kotecha, K. (2022).
Design and evaluation of an MRF damper for semi-active
vibration control of the machining processes. Journal of
Instrumentation, 17(12), P12017.https://doi.org/10.1088/1748-0221/17/12/P12017
-
Anton, J., Castelli, L., Chan, M. F., Outters, M., Tang,
W. H., Cheung, V., ... & Kotecha, K. (2022). How Well Do
Self-Supervised Models Transfer to Medical Imaging?.
Journal of Imaging, 8(12), 320. https://doi.org/10.3390/jimaging8120320
- Hiwale M, Varadarajan V, Walambe R, Kotecha K.
NikshayChain: A Blockchain-Based Proposal for
Tuberculosis Data Management in India. Technologies.
2023; 11(1):5. https://doi.org/10.3390/technologies11010005
- Rajendran, A., Sahithi, V. S., Gupta, C., Yadav, M.,
Ahirrao, S., Kotecha, K., ... & Alhammad, S. (2022).
Detecting Extremism on Twitter during US Capitol Riot
Using Deep Learning Techniques. IEEE Access.
https://doi.org/10.1109/ACCESS.2022.3227962
- Tavse, S., Varadarajan, V., Bachute, M., Gite, S., &
Kotecha, K. (2022). A Systematic Literature Review on
Applications of GAN-Synthesized Images for Brain MRI.
Future Internet, 14(12), 351. https://doi.org/10.3390/fi14120351
- Kadam, P., Vora, D., Mishra, S., Patil, S., Kotecha, K.,
Abraham, A., & Gabralla, L. A. (2022). Recent Challenges
and Opportunities in Video Summarization with Machine
Learning Algorithms. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3223379
- Sasikumar, A., Vairavasundaram, S., Kotecha, K.,
Indragandhi, V., Ravi, L., Selvachandran, G., & Abraham,
A. (2022). Blockchain-based trust mechanism for digital
twin empowered Industrial Internet of Things. Future
Generation Computer Systems.
https://doi.org/10.1016/j.future.2022.11.002
- Bhandari, N., Walambe, R., Kotech, K., & Khare, S.
(2022). Comprehensive survey of computational learning
methods for analysis of gene expression data in
genomics. arXiv preprint arXiv:2202.02958. https://doi.org/10.3389/fmolb.2022.907150
- Mahajan, S., Harikrishnan, R., & Kotecha, K. (2022).
Adaptive Routing in Wireless Mesh Networks Using Hybrid
Reinforcement Learning Algorithm. IEEE Access, 10,
107961-107979. https://doi.org/10.1109/ACCESS.2022.3210993
- Kumar, N. R., Krishnan, R. B., Manikandan, G.,
Subramaniyaswamy, V., & Kotecha, K. (2022). Reversible
data hiding scheme using deep learning and visual
cryptography for medical image communication. Journal of
Electronic Imaging, 31(6), 063028.
https://doi.org/10
.1117/1.JEI.31.6.063028
-
Misra S, Kumar S, Sayyad S, Bongale A, Jadhav P, Kotecha
K, Abraham A, Gabralla LA. Fault Detection in Induction
Motor Using Time Domain and Spectral Imaging-Based
Transfer Learning Approach on Vibration Data. Sensors.
2022; 22(21):8210.https://doi.org/10.3390/s22218210
-
Magaraja, A. D., Rajapackiyam, E., Kanagaraj, V.,
Kanagaraj, S. J., Kotecha, K., Vairavasundaram, S., ...
& Palade, V. (2022). A Hybrid Linear Iterative
Clustering and Bayes Classification-Based GrabCut
Segmentation Scheme for Dynamic Detection of Cervical
Cancer. Applied Sciences, 12(20), 10522.https://doi.org/10.3390/app122010522
-
Zope, B., Mishra, S., Shaw, K., Vora, D. R., Kotecha,
K., & Bidwe, R. V. (2022). Question Answer System: A
State-of-Art Representation of Quantitative and
Qualitative Analysis. Big Data and Cognitive
Computing, 6(4), 109. https://doi.org/10.3390/bdcc6040109
-
Natarajan, B., Rajalakshmi, E., Elakkiya, R., Kotecha,
K., Abraham, A., Gabralla, L.A., & Subramaniyaswamy,
V. (2022). Development of an end-to-end deep learning
framework for sign language recognition, translation,
and video generation. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3210543
-
Gaikwad, M., Ahirrao, S., Kotecha, K., & Abraham, A.
(2022). Multi-Ideology Multi- Class Extremism
Classification Using Deep Learning Techniques. IEEE
Access, 10, 104829-104843.https://doi.org/10.1109/ACCESS.2022.3205744
-
Gawde, S., Patil, S., Kumar, S., & Kotecha, K.
(2022). A scoping review on multi-fault diagnosis of
industrial rotating machines using multi-sensor data
fusion. Artificial Intelligence Review, 1-54.https://doi.org/10.1007/s10462-022-10243-z
-
Jena, R., Pradhan, B., Gite, S., Alamri, A., & Park,
H. J. (2022). A new method to promptly evaluate spatial
earthquake probability mapping using an explainable
artificial intelligence (XAI) model. Gondwana
Research.https://doi.org/10.1016/j.gr.2022.10.003
-
Rathod, M., Dalvi, C., Kaur, K., Patil, S., Gite, S.,
Kamat, P., ... & Gabralla, L. A. (2022). Kids’
Emotion Recognition Using Various Deep-Learning Models
with Explainable AI. Sensors, 22(20), 8066. https://doi.org/10.3390/s22208066
-
Wagle, S. A., Varadarajan, V., & Kotecha, K. (2022). A
New Compact Method Based on a Convolutional Neural
Network for Classification and Validation of Tomato
Plant Disease. Electronics, 11(19), 2994. https://doi.org/10.3390/electronics11192994
-
Sanakkayala, D. C., Varadarajan, V., Kumar, N., Soni,
G., Kamat, P., Kumar, S., ... & Kotecha, K. (2022).
Explainable AI for Bearing Fault Prognosis Using Deep
Learning Techniques. Micromachines, 13(9), 1471. https://doi.org/10.3390/mi13091471
-
Choudhary, R., Walambe, R., & Kotecha, K. (2022).
Spatial and temporal features unified self-supervised
representation learning networks. Robotics and
Autonomous Systems, 104256. https://doi.org/10.1016/j.robot.2022.104256
-
Ahmad, F., Shahid, M., Alam, M., Ashraf, Z., Sajid, M.,
Kotecha, K., & Dhiman, G. (2022). Levelized Multiple
Workflow Allocation Strategy under Precedence
Constraints with Task Merging in IaaS Cloud
Environment. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3202651
-
Kusal, S., Patil, S., Choudrie, J., Kotecha, K., Mishra,
S., & Abraham, A. (2022). AI-based Conversational
Agents: A Scoping Review from Technologies to Future
Directions. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3201144
-
V. K. Menaria, A. Nayyar, S. Kumar and K. Kotecha,
"Multiway relay based framework for network coding in
multi-hop wsns," Computers, Materials & Continua, vol.
74, no.1, pp. 1199–1216, 2023. https://doi.org/10.32604/cmc.2023.032162
-
Patil, S.; Varadarajan, V.; Mazhar, S.M.; Sahibzada, A.;
Ahmed, N.; Sinha, O.; Kumar, S.; Shaw, K.; Kotecha, K.
Explainable Artificial Intelligence for Intrusion
Detection System. Electronics 2022, 11, 3079. https://doi.org/10.3390/electronics11193079
-
Chavan, M.; Varadarajan, V.; Gite, S.; Kotecha, K. Deep
Neural Network for Lung Image Segmentation on Chest
X-ray. Technologies 2022, 10, 105. https://doi.org/10.3390/
technologies10050105
-
Singamaneni, K. K., Juneja, A., Abd-Elnaby, M., Gulati,
K., Kotecha, K., & Kumar, A. S. (2022). An Enhanced
Dynamic Nonlinear Polynomial Integrity-Based QHCP-ABE
Framework for Big Data Privacy and Security. Security
and Communication Networks, 2022. https://doi.org/10.1155/2022/4206000
-
Karn, A. L., Sengan, S., Kotecha, K., Pustokhina, I. V.,
Pustokhin, D. A., Subramaniyaswamy, V., & Buddhi, D.
(2022). ICACIA: An Intelligent Context-Aware framework
for COBOT in defense industry using ontological and deep
learning models. Robotics and Autonomous Systems,
104234. https://doi.org/10.1016/j.robot.2022.104234
-
Vyas, A. H., Mehta, M. A., Kotecha, K., Pandya, S.,
Alazab, M., & Gadekallu, T. R. (2022). Tear film breakup
time-based dry eye disease detection using convolutional
neural network. Neural Computing and Applications,
1-19.https://doi.org/10.1007/s00521-022-07652-0
-
Sasikumar, A., Ravi, L., Kotecha, K., Indragandhi, V., &
Subramaniyaswamy, V. (2022). Reconfigurable and hardware
efficient adaptive quantization model-based accelerator
for binarized neural network. Computers and Electrical
Engineering, 102, 108302.https://doi.org/10.1016/j.compeleceng.2022.108302
-
Zala, K., Thakkar, H. K., Jadeja, R., Singh, P.,
Kotecha, K., & Shukla, M. (2022). PRMS: Design and
Development of Patients’ E-Healthcare Records Management
System for Privacy Preservation in Third Party Cloud
Platforms. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3198094
-
Patel, V., Ramanna, S., Kotecha, K., & Walambe, R.
(2022). Short Text Classification with Tolerance-Based
Soft Computing Method. Algorithms, 15(8), 267. https://doi.org/
10.3390/a15080267
-
Zala, K., Thakkar, H. K., Jadeja, R., Dholakia, N. H.,
Kotecha, K., Jain, D. K., & Shukla, M. (2022). On the
Design of Secured and Reliable Dynamic Access Control
Scheme of Patient E-Healthcare Records in Cloud
Environment. Computational Intelligence and
Neuroscience, 2022.
https://doi.org/10.1155/2022/3804553
-
Singh, R. R., Banerjee, S., Manikandan, R., Kotecha, K.,
Indragandhi, V., & Vairavasundaram, S. (2022).
Intelligent IoT Wind Emulation System Based on Real-Time
Data Fetching Approach. IEEE Access, 10, 78253-78267.
https://doi.org/10.1109/ACCESS.2022.3193774
-
Narkhede, P., Walambe, R., Chandel, P., Mandaokar, S., &
Kotecha, K. (2022). MultimodalGasData: Multimodal
Dataset for Gas Detection and
Classification. Data, 7(8), 112.
https://doi.org/10.3390/data7080112
-
Singh, H., Rai, V., Kumar, N., Dadheech, P., Kotecha,
K., Selvachandran, G., & Abraham, A. (2022). An enhanced
whale optimization algorithm for clustering. Multimedia
Tools and Applications, 1-20. https://doi.org/10.1007/s11042-022-13453-3
-
Ramnath, G. S., Harikrishnan, R., Muyeen, S. M., &
Kotecha, K. (2022). Household Electricity Consumer
Classification Using Novel Clustering Approach, Review,
and Case Study. Electronics, 11(15), 2302. https://doi.org/10.3390/electronics11152302
-
Sayyad, S., Kumar, S., Bongale, A., Kotecha, K.,
Selvachandran, G., & Suganthan, P. N. (2022). Tool wear
prediction using long short-term memory variants and
hybrid feature selection techniques. The International
Journal of Advanced Manufacturing Technology, 1-23. https://doi.org/10.1007/s00170-022-09784-y
-
Kumar, R., Khepar, J., Yadav, K., Kareri, E., Alotaibi,
S. D., Viriyasitavat, W., ... & Dhiman, G. (2022). A
Systematic Review on Generalized Fuzzy Numbers and Its
Applications: Past, Present and Future. Archives of
Computational Methods in Engineering, 1-24. https://doi.org/10.1007/s11831-022-09779-8
-
Jani, D., Varadarajan, V., Parmar, R., Bohara, M. H.,
Garg, D., Ganatra, A., & Kotecha, K. (2022). An
Efficient Gait Abnormality Detection Method Based on
Classification. Journal of Sensor and Actuator
Networks, 11(3), 31. https://doi.org/10.3390/jsan11030031
-
Sasikumar, A., Ravi, L., Kotecha, K., Saini, J. R.,
Varadarajan, V., & Subramaniyaswamy, V. (2022).
Sustainable Smart Industry: A Secure and Energy
Efficient Consensus Mechanism for Artificial
Intelligence Enabled Industrial Internet of
Things. Computational Intelligence and
Neuroscience, 2022.https://doi.org/10.1155/2022/1419360
- Jain, S., Bhargava, C., Varadarajan, V., & Kotecha, K.
(2022). “Fuzzy System Design Using Current Amplifier for
20nm CMOS Technology”.Computers, Materials &Amp;
Continua,72(1), 1815-1829. doi:
10.32604/cmc.2022.024004
- Nilkanth Mukund Deshpande, Shilpa Gite, Biswajeet
Pradhan, Mazen Ebraheem Assiri. “Explainable Artificial
Intelligence–A New Step towards the Trust in Medical
Diagnosis with AI Frameworks: A Review” , CMES-Computer
Modeling in Engineering & Sciences, June 2022,
https://www.techscience.com/CMES/online/detail/18706
- Hudnurkar, S., Sood, V., Mishra, V., Mehta, M.,
Upadhyay, A., Gite, S., & Rayavarapu, N. (2022).
Multivariate Time Series Forecasting of Rainfall Using
Machine Learning. In Artificial Intelligence of Things
for Weather Forecasting and Climatic Behavioral Analysis
(pp. 87-106). IGI Global.,
doi 10.4018/978-1-6684-3981-4.ch007
- Khade, S., Gite, S., & Pradhan, B. (2022). “Iris
Liveness Detection Using Multiple Deep Convolution
Networks". Big Data And Cognitive Computing, 6(2), 67.
doi:
10.3390/bdcc6020067
- Wilta, F., Chong, A., Selvachandran, G., Kotecha K., &
Ding, W. (2022). Generalized
Susceptible–Exposed–Infectious–Recovered model and its
contributing factors for analysing the death and
recovery rates of the COVID-19 pandemic. Applied Soft
Computing, 123, 108973. doi:
10.1016/j.asoc.2022.108973
- Raulji, J. K., Saini, J. R., Pal, K., & Kotecha, K.
(2022). A Novel Framework for Sanskrit-Gujarati Symbolic
Machine Translation System. International Journal of
Advanced Computer Science and Applications, 13(4). doi:10.14569/IJACSA.2022.0130444
- Natarajan, S., Vairavasundaram, S., Kotecha, K.,
Indragandhi, V., Palani, S., Saini, J. R., & Ravi, L.
(2022). CD-SemMF: Cross-Domain Semantic Relatedness
Based Matrix Factorization Model Enabled with Linked
Open Data for User Cold Start Issue. IEEE Access. doi:
10.1109/ACCESS.2022.3175566
- Samant, R. M., Bachute, M., Gite, S., & Kotecha, K.
(2022). Framework for Deep Learning-Based Language
Models using Multi-task Learning in Natural Language
Understanding: A Systematic Literature Review and Future
Directions. IEEE Access. DOI:
10.1109/ACCESS.2022.3149798
- Natu, M., Bachute, M., Gite, S., Kotecha, K., &
Vidyarthi, A. (2022). Review on epileptic seizure
prediction: machine learning and deep learning
approaches. Computational and Mathematical Methods in
Medicine, 2022.
https://doi.org/10.1155/2022/7751263
- Veeramuthu, A., Meenakshi, S., Mathivanan, G., Kotecha,
K., Saini, J. R., Vijayakumar, V., & Subramaniyaswamy,
V. (2022). MRI Brain Tumor Image Classification Using a
Combined Feature and Image-Based Classifier. Frontiers
in sychology, 13. https://doi.org/10.3389/fpsyg.2022.848784
- Tailor, J. H., Rakholia, R., Saini, J. R., & Kotecha, K.
(2022). Deep Learning Approach for Spoken Digit
Recognition in Gujarati Language. International Journal
of Advanced Computer Science and Applications, 13(4) http://dx.doi.org/10.14569/IJACSA.2022.0130450
- Barve, Y., Saini, J. R., Pal, K., & Kotecha, K. (2022).
A Novel Evolving Sentimental Bag-of-Words Approach for
Feature Extraction to Detect Misinformation.
International Journal of Advanced Computer Science and
Applications, 13(4). DOI :
10.14569/issn.2156-5570
- Modh, J. C., Saini, J. R., & Kotecha, K. (2022). A Novel
Morphological Analysis based Approach for Dynamic
Detection of Inflected Gujarati Idioms. International
Journal of Advanced Computer Science and Applications,
13(4). doi:
10.14569/IJACSA.2022.0130422
- Kadam, P., Pandya, S., Phansalkar, S., Sarangdhar, M.,
Petkar, N., Kotecha, K., & Garg, D. (2022). FVEstimator:
A novel food volume estimator Wellness model for calorie
measurement and healthy living. Measurement, 111294.
https://doi.org/10.1016/j.measurement.2022.111294
- Ali, F., Kumar, H., Patil, S., Kotecha, K., Banjar, A.,
& Daud, A. (2022). Target-DBPPred: An intelligent model
for prediction of DNA-binding proteins using discrete
wavelet transform based compression and light eXtreme
gradient boosting. Computers in Biology and Medicine,
145, 105533. https://doi.org/10.1016/j.compbiomed.2022.105533
- Jagtap, S. S., VS, S. S., Kotecha, K., &
Subramaniyaswamy, V. (2022). Securing Industrial Control
Systems from Cyber-Attacks: A Stacked Neural-Network
based Approach. IEEE Consumer Electronics Magazine.
DOI: 10.1109/MCE.2022.3168997
- Bidwe, R. V., Mishra, S., Patil, S., Shaw, K., Vora, D.
R., Kotecha, K., & Zope, B. (2022). Deep Learning
Approaches for Video Compression: A Bibliometric
Analysis. Big Data and Cognitive Computing, 6(2), 44. https://doi.org/10.3390/bdcc6020044
- Gayakwad, M., Patil, S., Kadam, A., Joshi, S., Kotecha,
K., Joshi, R., ... & Shelke, M. (2022). Credibility
Analysis of User-Designed Content Using Machine Learning
Techniques. Applied System Innovation, 5(2), 43. https://doi.org/10.3390/asi5020043
- Sasikumar, A., Senthilkumar, N., Subramaniyaswamy, V.,
Kotecha, K., Indragandhi, V., & Ravi, L. (2022). An
efficient, provably-secure DAG based consensus mechanism
for industrial internet of things. International Journal
on Interactive Design and Manufacturing (IJIDeM),
1-11.
https://doi.org/10.1007/s12008-022-00890-5
- Mahajan, S., HariKrishnan, R., & Kotecha, K. (2022).
Prediction of network traffic in wireless mesh networks
using hybrid deep learning model. IEEE Access, 10,
7003-7015. DOI:
10.1109/ACCESS.2022.3140646
- Deotale, D., Verma, M., Suresh, P., & Kotecha, K.
(2022). Optimized hybrid RNN model for human activity
recognition in untrimmed video. Journal of Electronic
Imaging, 31(5), 051409.
https://doi.org/10.1117/1.JEI.31.5.051409
- Mishra, S., Shaw, K., Mishra, D., Patil, S., Kotecha,
K., Kumar, S., & Bajaj, S. (2022). Improving the
Accuracy of Ensemble Machine Learning Classification
Models Using a Novel Bit-Fusion Algorithm for Healthcare
AI Systems. Frontiers in Public Health, 10.
doi: 10.3389/fpubh.2022.858282
- Mishra, A., Dharahas, G., Gite, S., Kotecha, K.,
Koundal, D., Zaguia, A., ... & Lee, H. N. (2022). ECG
Data Analysis with Denoising Approach and Customized
CNNs. Sensors, 22(5), 1928. doi:
10.3390/s22051928
- Pachouly, J., Ahirrao, S., & Kotecha, K. (2022).
SDPTool: A tool for creating datasets and software
defect predictions. SoftwareX, 18, 101036.
https://doi.org/10.1016/j.softx.2022.101036
- Shroff, J., Walambe, R., Singh, S. K., & Kotecha, K.
(2022). Enhanced Security Against Volumetric DDoS
Attacks Using Adversarial Machine Learning. Wireless
Communications and Mobile Computing, 2022. https://doi.org/10.1155/2022/5757164
- Banerjee, A., Garg, D., Das, V., Sahoo, L., Nath, I.,
Varadarajan, V., & Kotecha, K. (2022). Design of Energy
Efficient WSN Using a Noble SMOWA Algorithm.
CMC-COMPUTERS MATERIALS & CONTINUA, 72(2), 3585-3600. DOI:
10.32604/cmc.2022.025233
- Holkar, A., Walambe, R., & Kotecha, K. (2022). Few-Shot
learning for face recognition in the presence of image
discrepancies for limited multi-class datasets. Image
and Vision Computing, 120, 104420. https://doi.org/10.1016/j.imavis.2022.104420
- Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran,
G., & Abraham, A. (2022). A systematic literature review
on software defect prediction using artificial
intelligence: Datasets, Data Validation Methods,
Approaches, and Tools. Engineering Applications of
Artificial Intelligence, 111, 104773.
https://doi.org/10.1016/j.engappai.2022.104773
Published in
2021:
- Bhatt, A. R., Ganatra, A., & Kotecha, K. (2021).
Cervical cancer detection in pap smear whole slide
images using convnet with transfer learning and
progressive resizing. PeerJ Computer
Science, 7, e348. https://peerj.com/articles/cs-348
- Bhatt, A., Ganatra, A., & Kotecha, K. (2021).
COVID-19 pulmonary consolidations detection in chest
X-ray using progressive resizing and transfer learning
techniques. Heliyon, 7(6), e07211. doi: https://doi.org/10.1016/j.heliyon.2021.e07211
- Ghayvat, H., Awais, M., Gope, P., Pandya, S., &
Majumdar, S. (2021). Recognizing suspect and predicting
the spread of contagion based on mobile phone location
data (counteract): a system of identifying covid-19
infectious and hazardous sites, detecting disease
outbreaks based on the internet of things, edge
computing, and artificial intelligence. Sustainable
Cities and Society, 69, 102798. https://doi.org/10.1016/j.scs.2021.102798
- Mishra, N., & Pandya, S. (2021). Internet of things
applications, security challenges, attacks, intrusion
detection, and future visions: A systematic
review. IEEE Access, 9, 59353-59377. doi: https://doi.org/10.1109/ACCESS.2021.3073408..
- Mehta, P., Pandya, S., & Kotecha, K. (2021).
Harvesting social media sentiment analysis to enhance
stock market prediction using deep learning. PeerJ
Computer Science, 7, e476.https://doi.org/10.7717/peerj-cs.476
- Pandya, S., Wakchaure, M. A., Shankar, R., & Annam,
J. R. (2021). Analysis of NOMA-OFDM 5G wireless system
using deep neural network. The Journal of Defense
Modeling and Simulation, 1548512921999108. doi: https://doi.org/10.1177/1548512921999108
- Mishra, N., & Pandya, S. (2021). Internet of things
applications, security challenges, attacks, intrusion
detection, and future visions: A systematic
review. IEEE Access, 9, 59353-59377. https://doi.org/10.1109/ACCESS.2021.3073408
- Srivastava, A., Jain, S., Miranda, R., Patil, S.,
Pandya, S., & Kotecha, K. (2021). Deep learning
based respiratory sound analysis for detection of
chronic obstructive pulmonary disease. PeerJ
Computer Science, 7, e369. https://peerj.com/articles/cs-369.pdf
- Bhandari, N., Khare, S., Walambe, R., & Kotecha, K.
(2021). Comparison of machine learning and deep learning
techniques in promoter prediction across diverse
species. PeerJ Computer Science, 7, e365. https://doi.org/10.7717/peerj-cs.365
- Choudrie, J., Banerjee, S., Kotecha, K., Walambe, R.,
Karende, H., & Ameta, J. (2021). Machine learning
techniques and older adults processing of online
information and misinformation: A covid 19
study. Computers in human behavior, 119,
106716. https://doi.org/10.1016/j.chb.2021.106716
- Narkhede, P., Walambe, R., Mandaokar, S., Chandel, P.,
Kotecha, K., & Ghinea, G. (2021). Gas detection and
identification using multimodal artificial intelligence
based sensor fusion. Applied System
Innovation, 4(1), 3.https://doi.org/10.3390/asi4010003
- Walambe, R., Kolhatkar, A., Ojha, M., Kademani, A.,
Pandya, M., Kathote, S., & Kotecha, K. (2020,
December). Integration of explainable AI and blockchain
for secure storage of human readable justifications for
credit risk assessment. In International Advanced
Computing Conference (pp. 55-72). Springer,
Singapore.https://doi.org/10.3390/asi4010003
- Pandya, S., & Ghayvat, H. (2021). Ambient acoustic
event assistive framework for identification, detection,
and recognition of unknown acoustic events of a
residence. Advanced Engineering
Informatics, 47, 101238,https://doi.org/10.1016/j.aei.2020.101238.
- Patil, A., Bachute, M., & Kotecha, K. (2021).
Identification and Classification of the Tea Samples by
Using Sensory Mechanism and Arduino
UNO. Inventions, 6(4), 94.https://doi.org/10.3390/inventions6040094
- Mahajan, S., HariKrishnan, R., & Kotecha, K. (2022).
Prediction of network traffic in wireless mesh networks
using hybrid deep learning model. IEEE
Access, 10, 7003-7015. https://doi.org/10.1109/ACCESS.2022.3140646
- Bhargava, C., Sharma, P. K., & Kotecha, K. (2021).
Lifetime estimation of tantalum capacitor for mobile
applications using empirical and experimental
techniques: a DOE approach. International Journal
of Quality & Reliability Management, https://doi.org/10.1108/IJQRM-09-2021-0331
- Sarma, R., Bhargava, C., & Kotecha, K. An
Evolutionary Normalization Algorithm for Signed
Floating-Point Multiply-Accumulate Operation. Doi:
https://doi.org/10.32604/cmc.2022.024516
- Mahanta, H. J., Nath, K., Roy, A. K., Kotecha, K., &
Varadaranjan, V. (2021). Using Genetic Algorithm in
Inner Product to Resist Modular Exponentiation From
Higher Order DPA Attacks. IEEE Access, 10,
3238-3251. https://doi.org/10.1109/ACCESS.2021.3139925
- Tupe-Waghmare, P., Malpure, P., Kotecha, K., Beniwal,
M., Santosh, V., Saini, J., & Ingalhalikar, M.
(2021). Comprehensive genomic subtyping of glioma using
semi-supervised multi-task deep learning on multimodal
MRI. IEEE Access, 9, 167900-167910.https://doi.org/10.1109/ACCESS.2021.3136293
- Kumar, S., Kolekar, T., Kotecha, K., Patil, S., &
Bongale, A. (2022). Performance evaluation for tool wear
prediction based on Bi-directional,
Encoder–Decoder and Hybrid Long Short-Term Memory
models. International Journal of Quality &
Reliability Management.https://doi.org/10.1108/IJQRM-08-2021-0291
- Kadam, K. D., Ahirrao, S., & Kotecha, K. (2022).
Efficient approach towards detection and identification
of copy move and image splicing forgeries using mask
R-CNN with MobileNet V1. Computational Intelligence
and Neuroscience, 2022.https://doi.org/10.1155/2022/6845326
- Sengan, S., Kotecha, K., Vairavasundaram, I.,
Velayutham, P., Varadarajan, V., Ravi, L., &
Vairavasundaram, S. (2021). Real-Time Automatic
Investigation of Indian Roadway Animals by 3D
Reconstruction Detection Using Deep Learning for
R-3D-YOLOV3 Image Classification and
Filtering. Electronics, 10(24),
3079.https://
doi.org/10.3390/electronics10243079
- Devika, R., Vairavasundaram, S., Mahenthar, C. S. J.,
Varadarajan, V., & Kotecha, K. (2021). A Deep
Learning Model Based on BERT and Sentence Transformer
for Semantic Keyphrase Extraction on Big Social
Data. IEEE Access, 9,
165252-165261.https://doi.org/10.1109/ACCESS.2021.3133651
- Elakkiya, R., Jain, D. K., Kotecha, K., Pandya, S.,
Reddy, S. S., Rajalakshmi, E., ... &
Subramaniyaswamy, V. (2021). Hybrid Deep Neural Network
for Handling Data Imbalance in Precursor
MicroRNA. Frontiers in Public
Health, 9. https://doi.org/10.3389/fpubh/2021/82141
- Mishra, N., Pandya, S., Patel, C., Cholli, N., Modi, K.,
Shah, P., ... & Kotecha, K. (2021). Memcached: An
Experimental Study of DDoS Attacks for the Wellbeing of
IoT Applications. Sensors, 21(23),
8071. https://doi.org/10.3390/s21238071
- Dalvi, C., Rathod, M., Patil, S., Gite, S., &
Kotecha, K. (2021). A Survey of AI-Based Facial Emotion
Recognition: Features, ML & DL Techniques, Age-Wise
Datasets and Future Directions. Ieee
Access, 9, 165806-165840. doi: https://doi.org/10.1109/ACCESS.2021.3131733
- Varadarajan, V., Garg, D., & Kotecha, K. (2021). An
efficient deep convolutional neural network approach for
object detection and recognition using a multi-scale
anchor box in real-time. Future
Internet, 13(12), 307. https://doi.org/10.3390/fi13120307
- Dhanaraj, R. K., Ramakrishnan, V., Poongodi, M.,
Krishnasamy, L., Hamdi, M., Kotecha, K., &
Vijayakumar, V. (2021). Random Forest Bagging and
X-Means Clustered Antipattern Detection from SQL Query
Log for Accessing Secure Mobile Data. Wireless
Communications and Mobile Computing, 2021.https://doi.org/10.1155/2021/2730246
- Kotecha, K., Verma, R., Rao, P. V., Prasad, P., Mishra,
V. K., Badal, T., ... & Sharma, S. (2021). Enhanced
Network Intrusion Detection
System. Sensors, 21(23),
7835. https://doi.org/10.3390/s21237835
- Bathla, G., Singh, P., Kumar, S., Verma, M., Garg, D.,
& Kotecha, K. (2021). Recop: Fine-grained Opinions
and Collaborative Filtering based Recommender System for
Industry 5.0.https://doi.org/10.1007/s00500-021-06590-8
- Shiralkar, K., Bongale, A., Kumar, S., Kotecha, K.,
& Prakash, C. (2021). Assessment of the benefits of
information and communication technologies (ICT)
adoption on downstream supply chain performance of the
retail industry. Logistics, 5(4), 80., https://doi.org/10.3390/logistics5040080
- Gite, S., Mishra, A., & Kotecha, K. (2022). Enhanced
lung image segmentation using deep learning. Neural
Computing and Applications, 1-15.https://doi.org/10.1007/s00521-021-06719-8
- Jain, V., Nankar, O., Jerrish, D. J., Gite, S., Patil,
S., & Kotecha, K. (2021). A novel AI-based system
for detection and severity prediction of dementia using
MRI. IEEE Access, 9, 154324-154346. https://doi.org/10.1109/ACCESS.2021.3127394
- Patil, A., Bachute, M., & Kotecha, K. (2021).
Identification and Classification of the Tea Samples by
Using Sensory Mechanism and Arduino
UNO. Inventions, 6(4), 94., https://doi.org/10.3390/
inventions6040094
- Bhanage, D. A., Pawar, A. V., & Kotecha, K. (2021).
IT Infrastructure Anomaly Detection and Failure
Handling: A Systematic Literature Review Focusing on
Datasets, Log Preprocessing, Machine & Deep Learning
Approaches and Automated Tool. IEEE Access.https://doi.org/10.1109/ACCESS.2021.3128283
- Kadam, K., Ahirrao, S., Kotecha, K., & Sahu, S.
(2021). Detection and localization of multiple image
splicing using MobileNet V1. IEEE Access, 9,
162499-162519.. https://doi.org/10.48550/arXiv.2108.09674
- Gaikwad, M., Ahirrao, S., Phansalkar, S., & Kotecha,
K. (2021). Multi-Ideology ISIS/Jihadist White
Supremacist (MIWS) Dataset for Multi-Class Extremism
Text Classification. Data, 6(11), 117. https://doi.org/10.5281/zenodo.5687447
- Mishra, S., Tripathy, H. K., Thakkar, H. K., Garg, D.,
Kotecha, K., & Pandya, S. (2021). An explainable
intelligence driven query prioritization using balanced
decision tree approach for multi-level psychological
disorders assessment. Frontiers in Public
Health, 9.https://doi.org/10.3389/fpubh.2021.795007
- Pande, J., Nasikkar, P., Kotecha, K., & Varadarajan,
V. (2021). A review of maximum power point tracking
algorithms for wind energy conversion
systems. Journal of Marine Science and
Engineering, 9(11), 1187.https://doi.org/10.3390/jmse9111187
- Sajid, M., Singh, J., Haidri, R. A., Prasad, M.,
Varadarajan, V., Kotecha, K., & Garg, D. (2021). A
Novel Algorithm for Capacitated Vehicle Routing Problem
for Smart Cities. Symmetry, 13(10), 1923..https://doi.org/10.3390/sym13101923
- Walambe, R., Marathe, A., Kotecha, K., & Ghinea, G.
(2021). Lightweight object detection ensemble framework
for autonomous vehicles in challenging weather
conditions. Computational Intelligence and
Neuroscience, 2021. https://doi.org/10.1155/2021/5278820
- Sharma, A., Kumar, V., Babbar, A., Dhawan, V., Kotecha,
K., & Prakash, C. (2021). Experimental investigation
and optimization of electric discharge machining process
parameters using grey-fuzzy-based hybrid
techniques. Materials, 14(19), 5820.. https://doi.org/10.3390/ma14195820
- Shah, A., Ahirrao, S., Pandya, S., Kotecha, K., &
Rathod, S. (2021). Smart cardiac framework for an early
detection of cardiac arrest condition and
risk. Frontiers in Public Health, 9.. doi: https://doi.org/10.3389/fpubh.2021.762303
- Khade, S., Ahirrao, S., Phansalkar, S., Kotecha, K.,
Gite, S., & Thepade, S. D. (2021). Iris liveness
detection for biometric authentication: A systematic
literature review and future
directions. Inventions, 6(4), 65. https://doi.org/10.3390/inventions6040065
- Kolekar, S., Gite, S., Pradhan, B., & Kotecha, K.
(2021). Behavior Prediction of Traffic Actors for
Intelligent Vehicle Using Artificial Intelligence
Techniques: A Review. IEEE Access, 9,
135034-135058.doi: https://doi.org/10.1109/ACCESS.2021.3116303
- Sharma, P. K., Bhargava, C., & Kotecha, K. (2021).
Sustainability analysis of a ZnO-NaCl-based capacitor
using accelerated life testing and an intelligent
modeling approach. Sustainability, 13(19),
10736.https://doi.org/10.3390/su131910736
- Walia, A. S., Srivastava, V., Garg, M., Somani, N.,
Gupta, N. K., Prakash, C., ... & Kotecha, K. (2021).
Surface Roughness Analysis of H13 Steel during
Electrical Discharge Machining Process Using
Cu–TiC Sintered
Electrode. Materials, 14(20), 5943..https://doi.org/10.3390/ma14205943
- Pandey, A., Nandgaonkar, M., Laad, M., Kotecha, K.,
& Kumbhar, V. (2021). Experimentation and
Comparison of Engine Performance, NOx Reduction and Nano
Particle Emission of Diesel, Algae, Karanja and Jatropha
Oil Methyl Ester Biodiesel with CeO 2 Fuel Additive in a
Military Heavy Duty 582 kW CIDI Diesel Engine (No.
2021-01-1209). SAE Technical Paper. doi: https://doi.org/10.4271/2021-01-1209
- Kadam, K. D., Ahirrao, S., & Kotecha, K. (2021).
Multiple image splicing dataset (MISD): a dataset for
multiple splicing. Data, 6(10), 102.https://doi.org/10.3390/data6100102
- Wagle, V., Kaur, K., Kamat, P., Patil, S., &
Kotecha, K. (2021). Explainable ai for multimodal
credibility analysis: Case study of online beauty health
(mis)-information. IEEE Access, 9,
127985-128022. doi: https://doi.org/10.1109/ACCESS.2021.3111527.
- Singh, A., Jaiswal, V., Joshi, G., Sanjeeve, A., Gite,
S., & Kotecha, K. (2021). Neural Style Transfer: A
Critical Review. IEEE Access. doi: https://doi.org/10.1109/ACCESS.2021.3112996
- Kusal, S., Patil, S., Kotecha, K., Aluvalu, R., &
Varadarajan, V. (2021). Ai based emotion detection for
textual big data: Techniques and contribution. Big
Data and Cognitive Computing, 5(3), 43.https://doi.org/10.3390/bdcc5030043
- Ruikar, K., Kotecha, K., Sandbhor, S., & Thomas, A.
(2021). SPECIAL ISSUE EDITORIAL: Next Generation
ICTs-How distant is ubiquitous computing?. DOI:
https://www.doi.org/10.36680/j.itcon.2021.033
- Salunkhe, S., Bachute, M., Gite, S., Vyas, N., Khanna,
S., Modi, K., ... & Kotecha, K. (2021).
Classification of Alzheimer’s disease patients
using texture analysis and machine
learning. Applied System Innovation, 4(3),
49. https://doi.org/10.3390/asi4030049
- Warke, V., Kumar, S., Bongale, A., & Kotecha, K.
(2021). Sustainable development of smart manufacturing
driven by the digital twin framework: a statistical
analysis. Sustainability, 13(18),
10139. https://doi.org/10.3390/su131810139
- Basak, A., Pramanik, A., Prakash, C., & Kotecha, K.
(2021). Micro-mechanical characterization of superficial
layer synthesized by electric discharge machining
process. Materials Letters, 305, 130769.https://doi.org/10.1016/j.matlet.2021.130769
- Kotecha, K., Garg, D., Mishra, B., Narang, P., &
Mishra, V. K. (2021). Background Invariant Faster Motion
Modeling for Drone Action
Recognition. Drones, 5(3), 87.https://doi.org/10.3390/drones5030087
- Shinde, R., Patil, S., Kotecha, K., & Ruikar, K.
(2021). Blockchain for securing ai applications and open
innovations. Journal of Open Innovation:
Technology, Market, and Complexity, 7(3),
189. https://doi.org/10.3390/joitmc7030189
- Sayyad, S., Kumar, S., Bongale, A., Kamat, P., Patil,
S., & Kotecha, K. (2021). Data-driven remaining
useful life estimation for milling process: sensors,
algorithms, datasets, and future directions. IEEE
Access, 9, 110255-110286. doi:https://doi.org/10.1109/ACCESS.2021.3101284.
- Pande, S., Chouhan, S., Sonavane, R., Walambe, R.,
Ghinea, G., & Kotecha, K. (2021). Development and
deployment of a generative model-based framework for
text to photorealistic image
generation. Neurocomputing, 463, 1-16.https://doi.org/10.1016/j.neucom.2021.08.055
- Walambe, R., Marathe, A., & Kotecha, K. (2021).
Multiscale object detection from drone imagery using
ensemble transfer learning. Drones, 5(3), 66.
https://doi.org/10.3390/drones5030066
- Narkhede, P., Walambe, R., Poddar, S., & Kotecha, K.
(2021). Incremental learning of LSTM framework for
sensor fusion in attitude estimation. PeerJ
Computer Science, 7, e662. doi:https://doi.org/10.7717/peerj-cs.662
- Patil, A. B., Bachute, M. R., & Kotecha, K. (2021).
Artificial perception of the beverages: An in-depth
review of the tea sample. IEEE Access, 9,
82761-82785. Doi: https://doi.org/10.1109/ACCESS.2021.3086038
- Baviskar, D., Ahirrao, S., & Kotecha, K. (2021).
Multi-Layout Invoice Document Dataset (MIDD): A Dataset
for Named Entity Recognition. Data, 6(7),
78. https://doi.org/10.3390/data6070078
- Baviskar, D., Ahirrao, S., & Kotecha, K. (2021).
Multi-layout Unstructured Invoice Documents Dataset: A
dataset for Template-free Invoice Processing and its
Evaluation using AI Approaches. IEEE
Access, 9, 101494-101512.
doi:
https://doi.org/10.1109/ACCESS.2021.3096739.
- Gite, S., Pradhan, B., Alamri, A., & Kotecha, K.
(2021). ADMT: advanced driver’s movement tracking
system using spatio-temporal interest points and
maneuver anticipation using deep neural
networks. IEEE Access, 9, 99312-99326.
doi: https://doi.org/10.1109/ACCESS.2021.3096032.
- Gite, S., Kotecha, K., & Ghinea, G. (2021).
Context–aware assistive driving: an overview of
techniques for mitigating the risks of driver in
real-time driving environment. International
Journal of Pervasive Computing and Communications.
https://doi.org/10.1108/IJPCC-11-2020-0192
- Choudrie, J., Patil, S., Kotecha, K., Matta, N., &
Pappas, I. (2021). Applying and understanding an
advanced, novel deep learning approach: A Covid 19, text
based, emotions analysis study. Information Systems
Frontiers, 23(6), 1431-1465.https://doi.org/10.1007/s10796-021-10152-6
- Baviskar, D., Ahirrao, S., Potdar, V., & Kotecha, K.
(2021). Efficient automated processing of the
unstructured documents using artificial intelligence: A
systematic literature review and future
directions. IEEE Access, 9, 72894-72936.https://doi.org/10.1109/ACCESS.2021.3072900
- Agrawal, R., Agrawal, M., Kulkarni, S., Kotecha, K.,
& Walambe, R. (2021). Quantitative analysis of
research on artificial intelligence in retinopathy of
prematurity. Libr Philos Pract, 1-29. https://digitalcommons.unl.edu/libphilprac/5342/
- Bhanage, D. A., Pawar, A. V., & Kotecha, K. (2021).
Review and Analysis of Failure Detection and Prevention
Techniques in IT Infrastructure Monitoring. Library
Philosophy and Practice, 0_1-34.. https://digitalcommons.unl.edu/libphilprac/5248/
- Sur, A., Solke, N., Pandiya, S., & Kotecha, K.
(2021, March). Design and analysis of nozzles for
pneumatic windshield wiper. In IOP Conference
Series: Materials Science and Engineering (Vol.
1104, No. 1, p. 012002). IOP Publishing. https://doi.org/10.1088/1757-899X/1104/1/012002
- Gaikwad, M., Ahirrao, S., Phansalkar, S., & Kotecha,
K. (2021). Online extremism detection: A systematic
literature review with emphasis on datasets,
classification techniques, validation methods, and
tools. IEEE Access, 9,
48364-48404. doi: https://doi.org/10.1109/ACCESS.2021.3068313.
- Agrawal, R., Kulkarni, S., Walambe, R., & Kotecha,
K. (2021). Assistive framework for automatic detection
of all the zones in retinopathy of prematurity using
deep learning. Journal of Digital
Imaging, 34(4), 932-947.https://doi.org/10.1007/s10278-021-00477-8
- Joshi, G., Walambe, R., & Kotecha, K. (2021). A
review on explainability in multimodal deep neural
nets. IEEE Access, 9,
59800-59821. doi: https://doi.org/10.1109/ACCESS.2021.3070212
- Mahajan, S., Hari, K. R., & Kotecha, K. (2021). A
Literature Survey and Bibliometric Analysis of
Application of Artificial Intelligence Techniques on
Wireless Mesh Networks. Library Philosophy and
Practice, 1-14.. https://digitalcommons.unl.edu/libphilprac/4937/
- Kadam, K., Ahirrao, S., & Kotecha, K. (2021). AHP
validated literature review of forgery type dependent
passive image forgery detection with explainable
AI. International Journal of Electrical &
Computer Engineering (2088-8708), 11(5). http://doi.org/10.11591/ijece.v11i5.pp4489-4501
- Karande, H., Walambe, R., Benjamin, V., Kotecha, K.,
& Raghu, T. S. (2021). Stance detection with BERT
embeddings for credibility analysis of information on
social media. PeerJ Computer Science, 7,
e467.. https://doi.org/10.7717/peerj-cs.467
- Hiwale, M., Phanasalkar, S., & Kotecha, K. (2021).
Using Blockchain and Distributed Machine Learning to
Manage Decentralized but Trustworthy Disease
Data. Science & Technology
Libraries, 40(2), 190-213.. https://doi.org/10.1080/0194262X.2020.1859046
Published in
2020:
- Srivastava, A., Hasan, M., Yagnik, B., Walambe, R., &
Kotecha, K. (2021). Role of artificial intelligence in
detection of hateful speech for Hinglish data on social
media. In Applications of Artificial Intelligence and
Machine Learning (pp. 83-95). Springer, Singapore. https://doi.org/10.48550/arXiv.2105.04913
- Tiwari, S. S., Dholaria, A., Pandey, R., Nigam, G.,
Agrawal, R., Walambe, R., & Kotecha, K. (2020,
September). Deep learning-based framework for retinal
vasculature segmentation. In Congress on Intelligent
Systems (pp. 275-290). Springer, Singapore. doi::
10.1007/978-981-33-4582-9_22
- Bhatt, A. R., Ganatra, A., & Kotecha, K. (2021).
Cervical cancer detection in pap smear whole slide
images using convnet with transfer learning and
progressive resizing. PeerJ Computer Science, 7, e348.
doi:10.7717/peerj-cs.348
- Gite, S., Khatavkar, H., Kotecha, K., Srivastava, S.,
Maheshwari, P., & Pandey, N. (2021). Explainable stock
prices prediction from financial news articles using
sentiment analysis. PeerJ Computer Science, 7, e340. https://doi.org/10.7717/peerj-cs.340
- Pandya, S., Ghayvat, H., Sur, A., Awais, M., Kotecha,
K., Saxena, S., ... & Pingale, G. (2020). Pollution
weather prediction system: smart outdoor pollution
monitoring and prediction for healthy breathing and
living. Sensors, 20(18), 5448. doi:10.3390/s20185448
- Patil, S., Mudaliar, V. M., Kamat, P., & Gite, S.
(2020). LSTM based Ensemble Network to enhance the
learning of long-term dependencies in
chatbot. International Journal for Simulation and
Multidisciplinary Design Optimization, 11, 25., https://doi.org/10.1051/smdo/2020019
- Apte, A., Joshi, V. A., Mehta, H., & Walambe, R. (2019).
Disturbance-observer-based sensorless control of PMSM
using integral state feedback controller. IEEE
Transactions on Power Electronics, 35(6), 6082-6090., doi:
10.1109/TPEL.2019.2949921.
- Sur, A., Sah, R. P., & Pandya, S. (2020). Milk storage
system for remote areas using solar thermal energy and
adsorption cooling. Materials Today: Proceedings, 28,
1764-1770., doi: https://doi.org/10.1016/j.matpr.2020.05.170
- Pandya, S., Sur, A., & Kotecha, K. (2020). Smart
epidemic tunnel: IoT-based sensor-fusion assistive
technology for COVID-19 disinfection. International
Journal of Pervasive Computing and Communications., https://doi.org/10.1108/IJPCC-07-2020-0091
- Pandya, S., Ghayvat, H., Sur, A., Awais, M., Kotecha,
K., Saxena, S., ... & Pingale, G. (2020). Pollution
weather prediction system: smart outdoor pollution
monitoring and prediction for healthy breathing and
living. Sensors, 20(18), 5448.doi: https://www.mdpi.com/1424-8220/20/18/5448
- Awais, M., Ghayvat, H., Krishnan Pandarathodiyil, A.,
Nabillah Ghani, W. M., Ramanathan, A., Pandya, S., ... &
Faye, I. (2020). Healthcare professional in the loop
(HPIL): classification of standard and oral
cancer-causing anomalous regions of oral cavity using
textural analysis technique in autofluorescence
imaging. Sensors, 20(20), 5780. https://doi.org/10.3390/s20205780
- Patel, C. I., Labana, D., Pandya, S., Modi, K., Ghayvat,
H., & Awais, M. (2020). Histogram of oriented
gradient-based fusion of features for human action
recognition in action video sequences. Sensors, 20(24),
7299. doi:10.3390/s20247299
- Gite, S., Khatavkar, H., Kotecha, K., Srivastava, S.,
Maheshwari, P., & Pandey, N. (2021). Explainable stock
prices prediction from financial news articles using
sentiment analysis. PeerJ Computer Science, 7, e340..
https://doi.org/10.7717/peerj-cs.340
- Deshpande, N. M., Gite, S. S., & Aluvalu, R. (2020). A
brief bibliometric survey of leukemia detection by
machine learning and deep learning approaches. Lib.
Philo. Pract, 4569. https://digitalcommons.unl.edu/libphilprac/4569
Published in
2019:
- Sanghani, G., & Kotecha, K. (2019). Incremental
personalized E-mail spam filter using novel TFDCR
feature selection with dynamic feature update. Expert
Systems with Applications, 115, 287-299. https://doi.org/10.1016/j.eswa.2018.07.049
- Chaudhari, P., Agrawal, H., & Kotecha, K. (2020). Data
augmentation using MG-GAN for improved cancer
classification on gene expression data. Soft
Computing, 24(15), 11381-11391. https://doi.org/10.1007/s00500-019-04602-2
- Gite, S., Agrawal, H., & Kotecha, K. (2019). Early
anticipation of driver’s maneuver in semiautonomous
vehicles using deep learning. Progress in Artificial
Intelligence, 8(3), 293-305. https://doi.org/10.1007/s13748-019-00177-z
- Ghayvat, H., Awais, M., Pandya, S., Ren, H., Akbarzadeh,
S., Chandra Mukhopadhyay, S., ... & Chen, W. (2019).
Smart aging system: uncovering the hidden wellness
parameter for well-being monitoring and anomaly
detection. Sensors, 19(4), 766. https://doi.org/10.3390/s19040766
- Gite, S., & Agrawal, H. (2019). Early prediction of
driver's action using deep neural
networks. International Journal of Information Retrieval
Research (IJIRR), 9(2), 11-27.
https://doi 10.4018/IJIRR.2019040102
Published
Previously:
- Pandya, S.; Ghayvat, H.; Kotecha, K.; Awais, M.;
Akbarzadeh, S.; Gope, P.;Mukhopadhyay, S.C.;
Chen, W., “Smart Home Anti-Theft System:
A Novel Approach for Near Real-Time Monitoring and
Smart Home Security for Wellness
Protocol”Applied System
Innovation, volume 1, issue
4, Oct 2018. doi: https://doi.org/10.3390/asi1040042
- P S V Nataraj K Kotecha. An improved interval global
optimization algorithm using higher-order inclusion
function forms, Journal of Global Optimization, vol 32,
issue 1, pages, 35-63. https://doi.org/10.1007/s10898-004-5906-2
- P S V Nataraj, K Kotecha. An algorithm for global
optimization using the Taylor–Bernstein form as
inclusion function, Journal of Global Optimization, vol
24, issue 4, pages 417-436. doi: 10.1023/A:1021296315884
- K Kotecha, Sharnil Pandya, Anirban Sur. Influence of bed
temperature on performance of silica gel/methanol
adsorption refrigeration system at adsorption
equilibrium using IoT and AI, Particulate Science and
Technology,https://doi.org/10.1080/02726351.2020.1778145
- Ankit Thakkar and K Kotecha. Cluster Head Election for
Energy and Delay Constraint Applications of Wireless
Sensor Network. IEEE Sensor Journal, August 2014,
Vol.14, Issue 8. doi:
10.1109/JSEN.2014.2312549
- Priyank Thakkar and K Kotecha. Predicting Stock and
Stock Price Index Movement using Trend Deterministic
Data Preparation Layer , Expert system with
Applications, Elsevier, Vol. 42, Issue 1, pages 259-268,
doi:10.1016/j.eswa.2014.07.040
- Priyank Thakkar and K Kotecha. Predicting Stock Market
Index using Fusion of Machine Learning Techniques,
Expert Systems With Applications Elsevier, Vol. 42,
Issue 4 March 2015, Pages 2162-2172,https://doi.org/10.1016/j.eswa.2014.10.031
- Ankit Thakkar, K Kotecha. A new Bollinger Band based
energy efficient routing for clustered wireless sensor
network, Applied Soft Computing, Elsevier, vol 32, pages
144-153, July 2015.https://doi.org/10.1016/j.asoc.2015.03.018
- Deshpande S, Walambe R, ‘Differential Gaming approach
with safety parameter for Mobile Robot to circumvent a
Dynamic Obstacle’ IFAC Journal of Elsevier https://doi.org/10.1016/j.ifacol.2020.06.080
- Sharnil Pandya, Virendra Barot, Viral Kapadia, “QoS
Enabled IoT Based Low Cost Air Quality Monitoring System
with Power Consumption Optimization” has been published
with SCAAI affiliation in Cybernetics and Information
Technologies journal, Bulgarian Academy of Science, https://doi.org/10.2478/cait-2020-0021
- Anirban Sur, Swapnil Narkhade, Ramesh Prasad Sah,
Sharnil Pandya, Ketan Kotecha , “Influence of Bed
Temperature on Performance of Silicagel Methanol
Adsorption Refrigeration System at Adsorption
Equilibrium (Smart Solar Refrigerator using IoT and
AI)“, Particulate Science and Technology Journal, Taylor
and Francis, https://doi.org/10.1080/02726351.2020.1778145